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EXECUTIVE SUMMARY 
 

The growth of Big Data has begun to transform research and policy, and transportation is no 

exception. As detection and communications technologies grow more sophisticated, 

transportation sensors continue to generate more data. Abundant data are available on 

infrastructure condition, operating characteristics, and traveler behavior across temporal and 

spatial domains. These data present an opportunity to better understand the interactions 

between travelers and the traveling environment. An inventory of available data sources will 

identify potential applications that will ultimately improve safety outcomes, and in turn, lead 

to the design of better safety improvement strategies.  

 

Big Data gives agencies an unprecedented ability to monitor real-time transportation system 

data, to adjust practices, and to confront changing dynamics. It can empower transportation 

agencies to address issues of operational demand and efficiency. A challenge for these 

organizations is dealing with the wide variety of data that is now available — integrating data 

sets to establish a more comprehensive picture of road networks. This report explores the 

potential application of Big Data, its uses, benefits, and future challenges. Case studies are 

analyzed to better understand the strength of data applications. Cataloguing current practices 

and sources of data will allow development of more innovative data analysis methods. 

 

To achieve the research objectives, the team first reviewed current practices and applications; 

we showed that adoption of Big Data analysis has been incremental, with room for continued 

growth. The team next examined Big Data traffic safety sources, including traffic monitoring 

data, incident logs, GPS-based travel data, and connected vehicle-related data. This report 

lists key data sources, their contents, and offers a brief description of each data set. To 

generate useful applications for Big Data, it is important to understand current methods and 

approaches used across governments.  

 

The team then leveraged a stationary sensor-based regional data source: an application that 

integrates several sources of Big Data to assess traffic flow. The Louisville-Southern Indiana 
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Traffic Information (TRIMARC) system records speed, volume, and occupancy data at 15-

minute intervals throughout the day; incident logs are included. Using TRIMARC data, the 

research team performed an empirical analysis of: 1) the impacts crashes have on travel time 

reliability/variability, 2) the variation of crash impacts during peak and off-peak periods, and 

3) how different crash types produce significantly different outcomes. The study area was a 

segment of Interstate 65 (I-65) in metropolitan Louisville, Kentucky. As part of the analysis, 

the team developed a spreadsheet-based visualization tool — a space-time velocity map (or 

heat map). After an incident identifier, the incident information and the corresponding traffic 

speed of that day were placed into the spreadsheet, and a heat map was generated. The heat 

map let readers visualize the spatial and temporal effects of crashes, and enhanced visual 

understanding of the impact of crashes. Analysis of influencing factors revealed that the 

cumulative distribution function (CDF) of travel rates told a better story about the impacts of 

crashes: it showed how crashes affected travel rates during peak and off-peak periods. 

Reliability analysis found that crashes negatively impacted travel time reliability. Travel time 

variability (TTV), travel time index (TTI), planning time index (PTI), and buffer index 

values significantly increased when crashes occurred. To realize the full power of this data, 

more data sources should be used. This study illustrates that Big Data can be used 

innovatively to improve the understanding of crashes, their impacts, and their distribution in 

a spatial-temporal domain. 
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1. Big Data: Current Practice and Applications  
 

1.1 Introduction 

Technological advances in recent years have generated increasingly large volumes of data, 

which conventional processing techniques are unequipped to analyze. The emergence of Big 

Data has compelled researchers to address numerous underexplored issues, including 

transportation safety and mobility. The output of Big Data has resulted from the convergence 

of many social and technological factors, such as (Bakshi 2012):  

• Mobility: mobile devices, mobile events, and sensory integration 

• Data access and consumption: Internet, sensors/actuates, interconnected 

systems, social networking, convergent interfaces and access models (Internet, 

search and social networking, and messaging)  

• Information model and open source: major changes in the information-

processing model and the availability of an open source framework 

Both the public and private domain have contributed to generating Big Data, from 

government-level data on health services to consumer loyalty cards to social media to sensors 

(Wigan and Clarke 2013). Many stakeholders attempt to integrate Big Data into applications 

to enhance user outcomes. Public agencies have the power to improve performance and 

efficiency through data-driven performance metrics. To generate useful practice and 

applications from Big Data, it is important to understand current methods and approaches 

government organizations use to analyze these data sets. Big Data can be used to improve 

safety, mobility, and other dimensions of the transportation system.  

 

1.2 Current Practices and Methods Used to Collect and Archive Data 

Identifying and evaluating current practices for collecting, archiving, and analyzing Big Data 

will influence future research efforts. Cataloguing the current analytical methodologies 

employed to analyze large data sets will help researchers to develop more innovative, 

synergistic strategies and methods for using Big Data. This literature review focuses on the 
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methods and findings of previous researchers who have used Big Data to address 

transportation safety. 

 

Tarko (2012) developed a novel crash-modeling paradigm that accounted for the events that 

precede a crash. Previous research had focused on statistical associations between traffic 

interactions and accident frequency. Tarko cited the lack of data used to execute previous 

analysis as a critical drawback. A second method, causal modeling with counterfactual 

evaluation of the effects demanded that researchers calculate all of the factors associated with 

car crashes. Both approaches can underestimate the likelihood of crashes, but Tarko 

improved representations of the crash occurrence process. 

 

Tarko (2012) collected data from four drivers in a driving simulation over the course of 

several weeks. He found an inverse relationship between crash severity and crash frequency. 

He argued that precisely modeling accidents is immensely challenging. Many factors are 

unpredictable and cannot be reliably modeled mathematically or by using simulators. Tarko’s 

model had four components: the count model of accident frequency, the probability model of 

a risky event, the probability model of a crash, and a probability model of crash severity. 

This model was empirically tested with driving simulators. The results demonstrated that 

crashes can be modeled more accurately to predict future crash events. 

 

Giuliano et al. (2014) developed a data archive using Los Angeles area traffic data from the 

Los Angeles area sourced from the Regional Integration of Intelligent Transportation 

Systems (RIITS). This extracts data from Los Angeles’s Archived Data Management System 

(ADMS). The ADMS includes (p. 3; see Table 1): 

…freeway, arterial and public transit data. This large, dynamic, real-time database 

integrates transportation data from multiple sources (public transit operators, city 

departments of transportation, various districts of the California State Department of 

Transportation, local and state police agencies).  
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Table 1: ADMS Data Sources 

 
 

The data archive can be used to measure the transportation system’s performance at various 

times. Giuliano et al. observed that historical data rich in detail was critical for modeling and 

simulation. Using one week of sample data, the study leveraged cluster analysis to measure 

average speeds and identify spatial variability in transportation system performance (e.g., 

congestion levels during rush hour rural areas). Future iterations of their approach could 

include other performance measures such as traffic volume and delays. 

 

Wiliszowski et al. (2010) discussed the type of data that law enforcement agencies can 

collect and how that data may be leveraged to improve research on transportation safety. 

They found that data collection was not standardized across law enforcement agencies. 

Inconsistent data collection creates challenges for researchers who conduct large-scale 

studies among different states and municipalities. Random data sampling is more feasible 

and more consistent than performing convenience-based studies on the available data. 

Increasing cooperation across law enforcement agencies, governments, and research 

organizations can improve data quality. The aim is to create a national, standardized database 

that houses public safety data on crashes and traffic violations. 

 

Parikh and Hourdos (2014) used radar to measure vehicle speeds on rural roads with 

dangerous horizontal curves. This comparative study documented the effects of road signs on 

driver behavior by contrasting average vehicle speeds before and after new warning signs 

were installed; these signs warned drivers of the approaching curve and of the necessity of 

lowering their speed. The data collection systems used battery-powered radar, and readings 
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were decoded by software. The study validated the robustness of the collection system, and it 

could be used to collect speed-based data. 

 

Muthyalagari et al. (2000) collected GPS based travel data in Lexington, Kentucky, to study 

driver behavior over several days. Data were drawn from a Federal Highway Administration 

(FHWA) program that tracked 100 households. The research found that travel patterns in 

Lexington generally mirrored patterns documented by previous studies. They attributed 

differences to socio-economic factors and to drivers being more likely to take short and/or 

infrequent trips.  

 

Multiday travel measurements can provide planners with abundant information, such as the 

frequency of trips and average rate (Jones and Clarke, 1988). Additional research has 

indicated that sampling over multiple days can yield more efficient modeling efforts and 

increases the cost effectiveness of samples (Pas, 1986). Although Muthyalagari et al.’s 

(2000) effort was small, their methodology could be applied to a wider sample to examine 

large-scale mobility patterns. 

 

The Highway Safety Manual (AASHTO, 2010) states methods to evaluate safety:  

Included in the HSM is a quantitative method for predicting crashes on the basis of 

recently developed scientific approaches. The predictive method procedure includes 

the use of statistically derived equations known as safety performance functions 

(SPFs) that were developed for a set of base conditions unique to each facility type. 

The estimates calculated by using the SPFs should then be modified by using crash 

modification factors (CMFs) to help account for various changes in the segment or 

intersection nonbase conditions (Xie et al. 2011, p.19).   

 

Xi et al. (2001) applied these methods to a case study for Oregon, using crash data. They 

found that while the quantitative evaluations were useful for safety, challenges remained. 

There were data gaps in pedestrian numbers, traffic volumes in rural areas, and in the number 

of observations needed for underrepresented crash sites.  
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1.3 Current Practice and Applications 

Using Big Data can benefit governments in a number of ways. StateTech (2013) lists some 

potential benefits of utilizing Big Data:  

• Make better informed, better decisions faster  

• Improve outcomes  

• Identify and reduce inefficiencies 

• Eliminate waste and fraud  

• Increase return on investment 

• Improve transparency and service provision 

• Reduce security issues and crime  

Big Data can also enhance security, improve service delivery, offer the public and businesses 

more access to data, and give agencies the ability to develop applications in collaboration 

with governments (Cull, 2013). Big Data can improve threat mitigation (e.g., terrorism, 

disease), assist with crime prevention, and increase efficiency by streamlining processes, 

budget reductions, and compliance (“Four Federal” 2015). In government agencies, Big Data 

has streamlined operations, facilitated cross-agency collaboration across agencies, and 

trained employees. Chief information officers (CIOs) in state and federal governments 

contend that e-government has improved service delivery and reduced costs (West, 2000). 

Desouza (2014b) interviewed CIOs at all levels of government. Many CIOs expressed 

concern about the perception of Big Data as a fad, even though the types and availability of 

data continue to expand. A pressing challenge is identifying appropriate strategies to manage 

and analyze data.  

 

Big Data can foster rapid decision making because of the growth in real-time information. 

Federal employees have observed four ways that Big Data can influence governments: 

performance tracking and goal setting, cost savings, budgeting, and increasing efficiency.  

Big Data can empower transportation agencies to address issues of demand and efficiency in 

operation (Buckley and Lightman, 2015), and it can be utilized by planners to discern 
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patterns of travel behavior.  Agencies can monitor real-time activity on transportation 

systems and introduce modifications to deal with changing traffic dynamics. Big Data can be 

harnessed to develop insights into traffic problems (e.g., crashes), improve their detection, 

and help agencies decide where to allocate their human and financial resources (Vasudevan 

et al. 2015). 

 

Effectively using Big Data requires that researchers do significant planning during the early 

stages of a project. They will need to resolve legal issues, develop partnerships, define 

opportunities, prepare for obstacles or resistance, identify performance markers, and 

implement risk mitigation plans (Desouza, 2014b). One challenge for organizations is the 

variety of data and the integration of different data sets (Desouza, 2014b). In some cases, 

data may be scattered among a number of networks, requiring partnerships and collaborative 

efforts to gain access. Planning may also be the time to institute policies related to the 

management of Big Data. 

 

General issues that hinder technology in the public sector are marketing, privacy, equity, and 

financing (Edmiston, 2003). Many of these are salient within the context of Big Data. Asai 

and Akiyama (2013), during a broader discussion about data integration and analytics within 

the context of intelligent transportation systems, noted that Big Data can be inconsistent. 

There are also privacy issues that may need to be addressed during data acquisition. Data 

ownership and rights may inhibit the use or dissemination of data (Wigan and Clarke, 2013). 

Buckley and Lightman (2015) explored data sharing, outsourcing, and partnerships with the 

private sector. Big Data can also be of little benefit if there is a lack of expertise or tools to 

explore the data and conduct analysis (Gou et al. 2015). If the data quality is poor, but is still 

used to guide decision making, less-than-optimal outcomes may result (Wigan and Clarke, 

2013). Many agencies lack the resources to store and process Big Data, or even share it 

across departments. In some cases, agencies are skeptical of the costs and personnel changes 

needed to develop and implement Big Data programs. Tene and Polonetsky (2012) wrote 

that: “The principles of privacy and data protection must be balanced against additional 

societal values such as public health, national security and law enforcement, environmental 
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protection, and economic efficiency.” (p. 67). Another quickly emerging field is Big Data 

visualization. Many current visualization methods, such as GIS, lack bearing and change 

rates (Liu et al. 2015). 

 

Floating traveler data tracks travelers in real time, can detect factors such as location and 

speed, and has a number of applications (Buckley and Lightman, 2015) Table 2 is adapted 

from Buckley and Lightman (6) to define the purpose and potential use of Big Data. 

 

Table 2: Possible Uses of Floating Traveler Big Data 

Purpose Potential use 
Network performance 
analysis 

• Can measure congestion delays and system 
performance to identify trouble spots 

 Transportation infrastructure 
planning and demand 
management 

• Examine choices including route and mode of 
transit; generate origin and destination options  

• Develop applications to assist with 
managing demand on infrastructure  

Intervention analysis • Evaluate need for operational interventions in 
transportation system and the benefits of 
intervention 

Active Traffic Management • Develop incident detection capabilities based on 
real time data  

• Implement active traffic management strategies 
to mitigate the effects of incidents 

 
Traveler information and alert 
systems 

• Disseminate information from data via signs, 
media, etc.  

• Develop alerts via apps; allowing private 
developers to utilize data for same purpose 

 

Traffic forecasting • Forecast traffic based on current conditions and 
historical patterns  

• Adjust operations to meet forecasts 
 

Buckley and Lightman (6) also included a number of Big Data applications that were 

pertinent to transportation agencies. While these opportunities were likely dependent on data 
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availability and on the agency, the many ways to implement Big Data provides a glimpse of 

potential applications. Applications of Big Data to safety and mobility applications include:  

• Mapping congestion and generating alerts based on historical congestion 

averages 

• Mapping cycling and pedestrian activity 

• Mapping incidents and resulting closures 

• Forecasts of travel times  

Traffic engineering and signal operations can also potentially benefit from Big Data. Signal 

timing, traffic analysis, and signal phasing can be improved through the analysis of large data 

sets (Gou et al. 2015). “More historical data can let engineers obtain statistical information 

and thus depict a clearer picture of traffic trends” (Gou et al. 2015, p. 3). Generating traffic 

flow and predictive traffic information is another use of Big Data (Liu et al., 2015). Big Data 

can also be used to enhance visualization applications. Moreover, “the rise of Big Data has 

made it possible to use demand data at an operational level, which is necessary to directly 

measure the economic welfare of operational strategies and events” (Liu et al. 2015, p. 32). 

Analyzing Big Data can help stakeholders implement real-time, dynamic changes in response 

to traffic events. This can also reshape infrastructure design and better account for each 

driver’s behavior. 

 

Buckley and Lightman (2014) identified key financing areas to harness the full potential of 

Big Data: talent, business systems, and organizational culture. People with mathematical and 

statistical backgrounds are needed to manage and analyze Big Data. These skill sets are often 

in short supply, and private competition to land talented candidates is often fierce. Business 

systems, such as data management and storage will require updated IT resources and 

expanded networking capabilities; the latter are needed to streamline data sharing across 

multiple agencies. Reworking organizational culture requires less of a financial commitment; 

rather, it relies on stakeholders and recognizing the usefulness of Big Data and cultivating an 

environment that promotes innovation in data analysis. Arguing for greater investments in 

these areas requires stakeholders to highlight the benefits of integrating and using Big Data.  
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Benefit-cost analysis can illuminate the returns on investment agencies may expect from their 

increased engagement with Big Data.  

 

Buckley and Lightman (2014) also recommended several steps to start a Big Data program. 

Transportation agencies should focus on defined projects where leveraging Big Data will 

provide added value and increase the likelihood of success. From here, data should be 

identified and collected. Agencies should take advantage of outside expertise by forming 

partnerships with universities and other organizations. Finally, resources must be allocated to 

ensure the human and organizational capital needed to complete the project is available. 

 

The lifecycle of Big Data encompasses the processes of capturing, sorting, analyzing, and 

consuming it. These processes must be incorporated into enterprise systems (Bakshi, 2012). 

By making investments in key areas and by managing the lifecycle of Big Data, governments 

can understand potential benefits and move toward operationalizing it. Once an organization 

has internalized a thorough understanding of Big Data, it can take additional steps to manage 

and use it more effectively. Bakshi listed these approaches that organizations could consider:  

• Find technology enablers: These could be new infrastructure, software 

applications evaluation and pilots.  

• Adopt an ecosystems approach: Big Data is a new and emerging space, and 

there will be several upcoming technology options to review and select from.  

• Adopt a use case-based approach: Data’s value depends on the insight of 

the domain. Hence, look for use case-specific projects — for example, use 

cases of network-centric Big Data analytics or cybersecurity and video-based 

insights.  

• Invest in data-centric skill sets: The insights provided by large data sets are 

only as good as the domain knowledge of the data. Therefore, skills for data 

analysts and scientists need to be developed and nurtured.  

Drees and Castro (2014) measured the responsiveness of state governments to making data 

available to the public. States do this through open data policies, which allow public access 
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and/or open data portals (e.g., when government data is stored in a repository). The authors’ 

responsiveness score for each state was based on several factors, including their open data 

policy, quality of the policy, presence of an open data portal, and quality of the portal. The 

maximum score a state could achieve was 8. Table 3 presents the scores for each state. 

 

Table 3: Data Availability Scores by State 

State Total Score 
.Alabama 1 
.Alaska 1 
.Arizona 2 
.Arkansas 2 
.California 4 
.Colorado 3 
.Connecticut 7 
.Delaware 3 
.Florida 2 
.Georgia 2 
.Hawaii 8 
.Idaho 2 
.Illinois 8 
.Indiana 3 
.Iowa 3 
.Kansas 1 
.Kentucky 2 
.Louisiana 1 
.Maine 3 
.Maryland 8 
.Massachusetts 1 
.Michigan 4 
.Minnesota 3 
.Mississippi 2 
.Missouri 4 
.Montana 3 
.Nebraska 3 
.Nevada 1 
.New Hampshire 6 
.New Jersey 4 
.New Mexico 2 
.New York 8 
.North Carolina 3 
.North Dakota 2 
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.Ohio 3 

.Oklahoma 8 

.Oregon 4 

.Pennsylvania 2 

.Rhode Island 6 

.South Carolina 2 

.South Dakota 1 

.Tennessee 2 

.Texas 7 

.Utah 8 

.Vermont 4 

.Virginia 3 

.Washington 3 

.West Virginia 2 

.Wisconsin 3 

.Wyoming 1 
 

1.4 Big Data Case Studies  

While Big Data can confer benefits to all levels of government, practical applications provide 

the most persuasive evidence of Big Data in action. Analysis of Big Data has been popular in 

the areas of traffic and water management, emergency response, and public safety (Shueh, 

2015). Electronic toll systems can support varying payment schedules based on measures of 

congestion and mobility taken in real-time (Tene and Polonetsky, 2012). These schedules 

assist with emissions control efforts when environmental concerns are present. Cull (2013) 

noted that data from transportation systems has allowed planners to coordinate smoother 

responses to traffic and transit disruptions.  

 

Additionally, cities that use 311 information systems collect data that can address emergency 

management problems. Chicago is building a predictive analytics platform that identifies and 

analyzes data trends. It also generates predictions that can facilitate problem solving. Windy 

City, the City of Chicago’s name for its live analytics dashboard, can be accessed from all 

city departments. The goal is to have open source data and to identify performance areas 

where big data and analytics can make the greatest difference. Boston is using smartphone 

data as part of its “Street Bump” project to better improve its mapping of road conditions. 

The goal of this project is to pinpoint and target areas where street repairs are needed, so they 
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are done quickly and inexpensively (“Cloud computing” 2012). Many local governments 

have begun to rely on Big Data, especially police departments, which are using it to identify 

spatial and temporal tends in crime. As Shueh (2015) observed, “despite the conflicting 

signals, governments are gradually adopting Big Data tools and strategies, led by pioneering 

jurisdictions that are piecing together the standards, policy frameworks and leadership 

structures fundamental to effective analytics use.” Investments in “smart government” 

technologies are expected to grow to over $1 billion by 2017. 

 

Buckley and Lightman (2015) described the use of Big Data in several agencies. The City of 

Dubuque, Iowa, examined public transit ridership through usage data and origin-destination 

capture. The program tracked volunteers’ use of public transit. Information about transit and 

routes was provided to volunteers based on their travel and ability to save money by utilizing 

public transit. The project helped increased public transit use. The I-95 Corridor Coalition, 

which includes states along Interstate 95, used cooperation among state agencies to generate 

real-time travel information along the corridor. The data generated has increased states’ 

monitoring abilities while reducing costs, and improved their incident management and 

responses. San Francisco, California sought to improve parking management in the 

downtown area. The program used meters, sensors, and other tools to institute variable 

pricing. The program reduced rates and alleviated demand for parking. Lastly, the Oregon 

Department of Transportation contracted with a private vendor to receive data from a 

smartphone app, which tracks bicyclists. The goal was to identify locations significant 

bicycle usage and traffic fatalities.  

 

Vasudevan et al. (2015) utilized a large dataset acquired from a connected vehicle pilot 

program in Ann Arbor, Michigan. The data included basic safety messages, which contained 

speed, location, and other information. Data were divided into boxes at one-minute intervals. 

The boxes that were highly correlated were analyzed to detect patterns. Based on this work, 

predictive models were developed based on similar observations across correlated boxes. 

Miami-Dade County, Florida, uses Big Data methods to monitor water meters and generate 

cost savings by identifying leaks, while Louisville, Kentucky, employs sensors to track 
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inhaler uses and measure pollution with the aim of reducing emergency room visits and 

improve care (Desouza, 2014a).  

 

DeSouza (2014b) detailed a number of Big Data initiatives in federal and state government 

agencies. The United States Postal Service (USPS) uses data from scanned mail in some 

processing centers to detect fraud or suspicious mailings before they reach their intended 

destination. The Internal Revenue Service (IRS) has focused on developing ways to fix 

errors, detect tax evasion, and collect revenue owed. The agency uses taxpayer information 

and data on financial transactions to conduct “robo-audits” to track financial irregularities. 

Massachusetts began statewide effort, coined the Massachusetts Big Data Initiative, that will 

encourage collaboration between state agencies and researchers to analyze a variety of issues 

(“Cloud computing” 2012).  
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2. Data Sources Review 
 

2.1 Introduction 

In the past, traffic data were collected manually. This work was tedious, time-consuming, 

expensive, and often unreliable. Today, massive amounts of data are collected and available 

in real time due to the widespread adoption of Intelligent Transportation Systems (ITS). Big 

Data has transformed the outlook of science and engineering, including transportation. 

Transportation data are available for many highway systems and roads, where it is important 

to view traffic flow and how crashes, congestion, and roadwork affect speed, headway, and 

other traffic factors. The most widely used data sources are traffic monitoring systems — 

they continuously generate large amounts of data and capture traffic dynamics along 

segments of the highway network. Big Data applications can improve traffic safety and 

mobility, and can establish a sound understanding of how safety and mobility influence one 

another.  

 

2.2 Data Sources 

The first step toward fully integrating data sources and potential applications is to take 

inventory of available safety data. The aim of this process is to improve safety outcomes. 

Data can be drawn from federal, state, and local sources. The previous chapter described data 

available from other sources, but this section summarizes several federal sources, including 

Data.gov, a federal data repository. See Appendix A for a summary of data names, summary 

descriptions, and links. 

 

Federal agencies devoted to transportation safety have issued reports and statistics that may 

be useful, however, many sources only point toward summaries, not datasets that can be 

mobilized for original analyses. Governments at the state and local levels are more likely to 

be good sources of micro-level data. When first embarking on a new project, there are many 

sources of basic information available to researchers and the public. The Bureau of 

Transportation Statistics (rita.dot.gov/bts/) is a repository of federal transportation data, and it 

contains links to the National Transportation Statistics and other agency data. Topical areas 
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are classified by mode. The Federal Highway Administration (fhwa.dot.gov) maintains 

statistics on traffic fatalities, road conditions, and traffic volume trends. While much of the 

data stored by federal agencies are highway-centric, information specific to other modes is 

available on the Bureau of Transportation Statistics website and federal websites accessed via 

the Research and Innovative Technology Administration’s (RITA) U.S. Department of 

Transportation (USDOT) Research Hub (http://ntlsearch.bts.gov/researchhub/index.do). This 

page contains a search tool and links to other federal transportation agency websites. 

Other data sources are the Research Data Exchange (RDE) and TRIMARC. RDE, a system 

that promotes the sharing of archived and real-time transportation data derived from multiple 

sources (including vehicle probes) and for multiple modes. This new data sharing capability 

will support the needs of ITS researchers and developers while reducing costs and 

encouraging innovation. The different sources are summarized below. 

 

2.2.1 Data.gov 

Data.gov stores unrestricted federal data on a wide variety of topics, ranging from education 

to finance to public safety. As of November 2014, over 131,000 data sets were available. The 

research team restricted queries to public safety, which yielded over 340 data sets. Summary 

descriptions for each dataset were examined to determine which had potential applications 

for transportation safety. After filtering the results, a total of 61 data sets were identified. 

These are listed by name in Appendix A, along with the summary description of the each 

data set and the links to each individual dataset. In some cases, data sets from specific 

agencies are found in the list of data sets from Data.gov.   

 

2.2.2 National Highway Traffic Safety Administration  

The National Highway Traffic Safety Administration (NHTSA) was established by the 

Highway Safety Act of 1970 and is dedicated to achieving the highest standards of 

excellence in motor vehicle and highway safety. The National Center for Statistics and 

Analysis provides a wide range of analytical and statistical support to NHTSA and the 

broader highway safety community. In an effort to modernize various systems and databases, 

a major effort is underway to devise new data collection methods. Users may comment on 
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the future utility of current data elements, recommend additional data elements and attributes, 

and describe their anticipated data needs. A brief overview of this data system is given in 

Table 4. 

 

Table 4: National Center for Statistics and Analysis Data 

National Automotive Sampling System (NASS): contains Crashworthiness Data System 
(CDS) and General Estimates System (GES). CDS uses injury mechanisms to improve 
vehicle design. GES is a national sample of police reported motor vehicle crashes. 
National Driver Register (NDR): a database of information on drivers with suspended or 
revoked licenses or convicted of traffic violations. 
Special Crash Investigations (SCI): crash investigation data that includes basic police 
reports for all crashes and comprehensive reports on selected crashes. 
State Data System (SDS):  a collection of files from police reports (34 participating states).  
Not-in-Traffic Surveillance (NiTS): virtual data collection on non-traffic crashes and non-
crash incidents with injuries or fatalities. 
Crash Outcome Data Evaluation System (CODES): data which links crash, vehicle, and 
driver behavior to outcomes of motor vehicle crashes. 
Model Minimum Uniform Crash Criteria (MMUCC): recommended data elements for 
states to include in reporting crash forms and state level databases. 
Fatality Analysis Report System (FARS): yearly data on fatal injuries from crashes. 
Vehicle Crash Test Database: compilation of data from research, New Car Assessment 
program results, and compliance crash tests. 
Biomechanics Test Database: experimental data used for developing Anthropomorphic 
Test Devices and associated Injury Criteria. 
Component Test Database: engineering data using during various research projects. 
Crash Injury Research (CIREN): data on crashes, including reconstruction and medical 
injuries. 
 

There is also research information for the following areas: Biomechanics and Trauma, 

Behavioral, Crash Avoidance, Crashworthiness, Driver Simulation (NADS), Enhanced 

Safety of Vehicles (NADS), Event Data Recorder (EDR), Human Factors, Child Seat 

Research, Public Meetings, and Vehicle Research and Testing. 

 

2.2.3 Research Data Exchange  

RDE is a system that promotes the sharing of archived and real-time transportation data 

derived from multiple sources. RDE provides a variety of data-related services that support 

the development, testing, and demonstration of multi-modal transportation mobility 
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applications being developed under the USDOT ITS Dynamic Mobility Applications (DMA) 

Program. Also included are other research activities focused on connected vehicles. Data 

accessible through the RDE includes documentation and is freely available to the public. The 

DMA Program strives to enhance current operational practices and transform the 

management of future transportation systems through the acquisition and provision of 

integrated data from infrastructure, vehicles, and travelers.  

 

Basic information, including the list of data environments, is available at: https://www.its-

rde.net/home. Eleven data sets collected from different location across the U.S. are available 

from this database (Figure 1).  

 
Figure 1: Location of Collected Data 

Available data include: GPS data, vehicle trajectory, speed, acceleration data, connected 

vehicle Probe Data Message (PDM), and Basic Safety Message (BSM) information. Below, 

there is a brief description of each data set, which are split into two categories: (1) data 

related to connected vehicles, and (2) traditional traffic data. Further information regarding 

the data is available in Appendix B. 

 

https://www.its-rde.net/home
https://www.its-rde.net/home
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2.2.3.1 Connected Vehicle Initiative 

Six sets of data are included in this category. They are listed below with brief descriptions. 

 

(a) Vehicle Infrastructure Initiative Proof of Concept 

The Vehicle Infrastructure Initiative Proof of Concept (POC) contains data on the first major 

set of trials conducted at the Michigan Test Bed in 2008. The POC trials featured fifty-two 

roadside equipment (RSE) points within 45 square miles, 27 vehicles configured with 

onboard equipment (OBE), and a Dedicated Short-Range Communications (DSRC) network. 

The testing program had three major phases: subsystem test, system integration and test, and 

public and private applications test. The data consist of RSE and OBE data collected over six 

days. These six days were selected because the first and last days had much higher number of 

duplicate records and questionable data values. OBE trajectories data contained speed, 

longitude, latitude, and time stamps with individual ids (OBE_ID), while RSE data contained 

speed, longitude, latitude, elevation, heading, engine status, and time stamp with individual 

ids (RSE_ID).  

 

(b) National Center for Atmospheric Research 2009 

The National Center for Atmospheric Research (NCAR) houses data from a second set of 

trials that were conducted at the Michigan Test Bed to validate the Vehicle Infrastructure 

Initiative Proof of Concept. These trials used fewer vehicles and focused on collecting data 

during rainy or snowy weather. The data consisted of RSE and OBE data for the six days 

with the best data.  

 

(c) National Center for Atmospheric Research 2010 

The National Center for Atmospheric Research conducted a third set of trials similar to the 

2009 trials at the Michigan Test Bed. In this case, the tests compared atmospheric data from 

vehicle-mounted sensors to data from a nearby fixed weather observing station. 
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(d) Safety Pilot Model Deployment - One Day Sample 

There were three objectives of the Safety Pilot Model Deployment (SPMD): 1) exploration 

of the real-world effectiveness of connected vehicle safety applications in multi-modal 

driving conditions, 2) evaluation of how drivers adapt to the use of this connected vehicle 

technology, and 3) safety benefits of the connected vehicle technology. The SPMD — One-

Day Sample data from April 11, 2013 contained sanitized mobility data elements that were 

collected from over 2,700 vehicles equipped with connected vehicle technologies traversing 

Ann Arbor, Michigan. The mobility data were intended to support continued advancements 

in the connected vehicle domain as well as continue the development of applications to 

support improved transportation operation.  Figures 2 and 3 (Booz et al. 2014) represent the 

SPMD’s content and framework. 

 
Figure 2: Content of Safety Pilot Data Environment  
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Figure 3: Generalized Data Framework of SPMD Data Environment 

Error! Not a valid bookmark self-reference. presents each dataset and a list of the 
accompanying files from the SPMD. 
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Table 5: List of Datasets  

SPMD Environment 

Driving Data   Contextual 

DAS1 DAS2 Basic Safety Message Roadside Equipment Weather Network Schedule 

AudioTimes HV_Radar BrakeByte1Events BSM Weather/ climatic data Pointer to 

Resources 

Pointer to 

Resources 

DataDas HV_Primary BrakeByte2Events Geometry      

DataFrontTargets RV_Rx BsmMD Lane      

DataGpsDas DAS2_Trip_

Summary 

BsmP1 LaneNode      

DataLane  ExteriorLightsEvents MAP      

DataRv  PosAccurByte1Events Packet      

DataTc  PosAccurByte2Events PCAPFile      

DataWsu  PosAccurByte3Events SPAT      

DAS1_Trip_Summa

ry 

 PosAccurByte4Events SPATMovement      

TrnBytes  SteerAngleEvents TIM      

  ThrottlePositionEvents TIMRegion      

  TransStateEvents TIMRegionNode      

  WiperStatusFrontEvents       

  BSM_Trip_Summary       
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(e) Leesburg, Virginia Vehicle Awareness Device 

A Vehicle Awareness Device (VAD) was installed on a single test vehicle over a two-month 

period to generate continuous data. Data collection occurred during numerous trips around 

Leesburg, VA, and on one long road trip from Ann Arbor, MI, to Leesburg, VA, by way of 

eastern Indiana. The VAD installed in the test car was identical to the VADs installed in 

about 2,800 vehicles that participated in the Safety Pilot Model Demonstration in Ann Arbor, 

MI. The data set provided researchers an early sample of the more extensive data collected as 

part of the Safety Pilot Model Deployment.  All of the Basic Safety Messages produced by 

the originator’s vehicle were recorded. 

 

(f) Minnesota Department of Transportation Mobile Observation Data 

Mobile observation data were collected by the Minnesota DOT’s maintenance vehicles 

enrolled in the Minnesota Integrated Mobile Observation (IMO) project. Data were derived 

from mobile, vehicle-based observations of road conditions; included were vehicle engine 

status and weather conditions. Transmission via cellular media took place in approximately 

real-time from vehicles to the Minnesota DOT. This method of Vehicle-to-Infrastructure 

(V2I) reporting may be an important component of the connected vehicle program. 

 

2.2.3.2 Traditional Traffic Data 

Five data sets are included in this category. They are listed below with brief descriptions. 

 

(a) Florida Department of Transportation Orlando ITS World Congress 

The Florida Department of Transportation (FDOT) recorded data using Vehicle Awareness 

Devices (VADs) installed on Lynx transit buses in Orlando, Florida. The VADs became 

operational in September 2011 and continued operation during the ITS World Congress in 

October 2011. Recorded data included the required components of the J2735 Basic Safety 

Message (BSM). This data collection tested the capability of Vehicle Awareness Devices to 

capture and store data in the form of the J2735 Basic Safety Message. This served as a 

prototype for larger scale tests, such as the Basic Safety Model Deployment. Available data 
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contained a time stamp, longitude (deg), latitude (deg), elevation (m), heading (deg) and 

speed.  

 

(b) San Diego, California 

The San Diego data environment contained one year of raw and cleaned data for over 3,000 

traffic detectors that were deployed along 1,250 lane miles of I-5 in San Diego. The recorders 

captured and aggregated data at varying intervals, including 30-second raw reports and 5-

minute, hourly, and daily aggregations. Each point in the data set contained time stamp, 

average speed, average occupancy, total flow, and direction with individual station ID. The 

data set also included the average speed, occupancy, and flow of each lane. 

 

Additionally, this data set contained georeferenced data for over 1,500 incidents and lane 

closures for the two sections of I-5 that experienced the most incidents during 2010. This 

freeway incident file contained a number of fields, including individual incident 

identification, start time, duration, location, ALK grid, link identification, and a description 

of the incident. Complete trip (origin-to-destination) GPS "breadcrumbs" contained 

latitude/longitude, vehicle heading and speed data, and time for individual in-vehicles 

devices that were updated at 3-second intervals for 10,000 trips taken during 2010. Weather 

data were collected from seven weather stations in the San Diego area. Observation points 

held time stamps, temperature, visibility, wind direction, wind speed, snow (inches), 

precipitation, and relative humidity. 

 

(c) Pasadena, California 

The Pasadena data covered the roadway network in and around the City of Pasadena, 

California. Data were collected during September and October in 2011. The data 

environment included network data (highway network file), demand data (trip tables), 

network performance data (link volumes, turn volumes, speeds and capacity), work zone 

data, weather data, incident data, Closed Circuit Television (CCTV) camera data, and 

Changeable Message Sign (CMS) data. Data from simulations were included where there 
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were no sensors, and to provide forecasts. Data were documented in three different formats: 

Structured Query Logic (SQL) format, plain text format, and VISUM format. 

 

(d) Seattle, Washington 

From May 2011 to October 2011, extensive data were collected in the city of Seattle. This 

included raw and cleaned data from traffic detectors deployed by the Washington 

Department of Transportation (WSDOT) along I-5 in Seattle. These data included 20-second 

raw reports and 5-minute aggregations. For very detailed freeway performance evaluations, 

the 20-second data set provided freeway performance data for individual loop detectors. The 

20-second data were divided among four different data tables. These data tables described the 

location of the cabinets that contained the loop electronics, each specific loop, and correction 

factors developed to account for loop sensitivity issues. WSDOT aggregated 5-minute data at 

its traffic management center and reported them independently from data collected at 20-

second intervals. This level of aggregation provided sufficient detail to identify the onset of 

congestion, yet limited the amount of data handling required to develop those performance 

measures. The 5-minute data was split into three tables; Cabinets, Loops, and Loop Data. The 

Loop Data table contained loop identification, time stamp, location (longitude/latitude), 

volume, and occupancy data. 

 

The City of Seattle and WSDOT have placed numerous automatic license plate readers 

(ALPRs) at intersections around the city and on some state routes. Matching license plate 

reads from ALPRs at different intersections enabled the direct calculation of arterial travel 

times from one intersection to another by subtracting the time of passage at the upstream 

location from the time of passage at the downstream location. The ALPR data were stored in 

two related tables. The first table listed the locations of ALPR cameras.  The second table 

provided specific travel time segment information, such as unique identifier date, time, travel 

time, direction, and failed pass to check data quality. 

 

Incident data records came from the WSDOT's Washington Incident Tracking System 

(WITS). These data were collected from the reports of incident response teams. It contained 
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individual incident identifier, incident type, location (milepost), incident notification time, 

arrival time, and the amount of time needed to clear the event. GPS breadcrumb data from 

commercial trucks was not available to the public because of data ownership and privacy 

issues.  

 

(e) Portland, Oregon 

The Portland data included several different data sets. There were freeway data, which 

consisted of two months of data gathered from dual-loop detectors stationed on the main line 

and on-ramps of I-205, including speed, volume, direction, occupancy, travel time, and 

delays aggregated over different time intervals — 20 seconds, 5 minutes, 15 minutes, and 1 

hour. All data were in the same format 

 

Incident data from the Oregon Department of Transportation’s (ODOT) Advanced Traffic 

Management System database and planned event data from the ODOT Trip-Check Traveler 

Information Portal information web site were available. These data sets contained individual 

incident identifiers, latitude, longitude, location information, incident start time and end time, 

duration, and last update time. Weather data were collected from two sources: National 

Oceanic and Atmospheric Administration (NOAA) data and Remote Weather Information 

System (RWIS) stations. These data contained station id, report time, temperature, wind 

speed, precipitation and humidity. 

 

Three types of arterial data were collected: (1) volume and occupancy data from four single-

loop detectors on 82nd Avenue, (2) signal phase and timing data for 32 signals along the 

82nd Avenue corridor, (3) travel times on 82nd Avenue (calculated using data collected by 

two Bluetooth readers). Bluetooth data contained location (longitude and latitude), time 

stamp, and individual travel times.  

 

Arterial detectors, intersections, and stations data files contained the location (longitude and 

latitude) of each detector, intersection and station, identification, and description. Arterial, 

signal phase, and timing data contained signal phasing information and the time stamp of 
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different intersections. Transit data were collected by TriMet, the Portland-metro area transit 

agency, including schedule, stop event and passenger counts data for both bus and light rail.  

2.2.4 TRIMARC 

Traffic Management Centers (TMC) around the country house archived traffic monitoring 

data. TRIMARC is a local example, a regional TMC in the Louisville metropolitan area. It is 

an Intelligent Transportation System (ITS) designed to improve the performance of the 

freeway system in the metropolitan Louisville and Southern Indiana area.  TRIMARC was 

designed with ITS in mind to improve the freeway system’s performance in metropolitan 

Louisville and Southern Indiana.  

 

TRIMARC sensors collect data on volume, speed, and lane occupancy at 15-minute intervals 

at each detector section. Data come in 30-second slots, after which the TRIMARC server 

aggregates them for each 15-minute period and provides sample size information that how 

many 30-seconds slot have been aggregated. This offered a convenient way to check data 

quality. These data also contained incident data, encompassing incident location, direction, 

time, types of incident, and its duration. Figure 4 is a map of TRIMARC’s coverage. 

 

Figure 4: TRIMARC Interactive Map 
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3. Application of Integrating Big Data 
 

3.1 Introduction 

Highway incidents are a significant issue for travelers in the United States. According to the 

FHWA, traffic incidents are one of the two major causes of traffic congestion in the United 

States. Among traffic incidents, crashes are the origin of abnormally heavy traffic 

congestion. Crashes also diminish the reliability of transportation networks.  

 

Crashes and associated traffic congestion are a major concern to the public. To measure 

highway system performance, average travel time has been used as a principal indicator. But 

because of the highly dynamic nature of traffic, average conditions do not capture the entire 

story. Travel time reliability was recently proposed as a measure of the variability and degree 

of congestion. This concept has gained traction among researchers and practitioners, because 

it accurately compares an individual driver’s experience against average travel time. Many 

factors (e.g., road geometry, demand, capacity, weather, etc.) impact the travel time 

reliability of freeway facilities. Crashes affect travel time reliability because they reduce the 

capacity of a roadway segment, create a temporary bottleneck, and thus significantly delay 

travel. Very few studies have comprehensively examined the impact of traffic crashes on 

freeway travel time reliability.  

 

The incident data used for this study is rich with information; it includes incident type, 

location, start and end time, duration, and lane/shoulder block information. The primary 

objective of the research was to visualize the impact of crashes and investigate how factors 

influence the overall consequences. The research team examined the relationship between 

accidents and reliability on freeway routes. To accomplish these objectives, statistical 

analyses were conducted using one year of speed, travel time, and incident data collected on 

I-65 northbound and southbound in the Louisville, Kentucky, metropolitan area.  

 

The next section recent academic work and describes the study sites, data sources, 

visualization tool and influencing factor analysis, existing travel time reliability measures, 
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and the methods used to derive them. The concluding sections describe the analysis, 

summarize the findings, and make recommendations based on the study. 

 

3.2 Literature review 

Transportation researchers have recently turned their attention toward travel time reliability. 

Using traffic crash and empirical traffic flow data collected from the Netherlands, Tu et al. 

(2012) presented an empirical travel time reliability analysis. One limitation in their research 

was that the duration and severity of each accident were unknown, so they assumed each 

accident had a duration of three hours. Yu et al. (2013) used reliability analysis to assess 

freeway crash risks and to evaluate hazardous freeway segments. Reliability analysis 

accomplishes this by integrating traffic flow parameters and real-time crash occurrence risk 

at the disaggregate level with weather parameters. Yu et al. (2013) found this method 

provided more accurate crash predictions than logistic regression. Zhong et al. (2011) used 

data on rural roads in Wyoming to model and predict crashes. The data they used included 

accident records, traffic volume, speed, and other factors, from 36 roads over a 10-year 

period. Negative binomial regression and Poisson regression were used to examine the 

causes of rural crashes. Multiple regression approaches have attempted to analyze the 

relationship between crash rates and geometric roadway features. However, multiple studies 

have found linear regressions are unsuitable (Miaou et al. 1993; Okamoto and Koshi, 1989). 

Zhong et al. (2011) demonstrated that roads with higher speeds and traffic volumes elevated 

crash rates at certain higher risk locations. Wright et al. (2015) showed that incidents produce 

higher values in all reliability measures. They also examined how incidents affect the 

probability of traffic congestion on freeway segments. Compared to the normal condition, 

they found that shoulder incidents significantly increased the probability of freeway segment 

traffic breakdown, while incidents spread across multiple lanes resulted in the most 

significant increases in travel time variability and in the buffer index.  

 

Few studies have looked at the interactive effects of traffic and weather factors and roadway 

geometry on different crash types. Investigations of incident duration and identification of 

the contributing factors have been scarce, especially in research that uses different data types. 



 

 Developing an Integrated Framework for Safety and Mobility Analysis 31 

Among these, Yu et al. (2013) attempted to explore the use of microscopic traffic and 

weather indicators to differentiate between crash types and to analyze the crash type 

propensity at the micro-level for three major crash types — rear-end, sideswipe, and single-

vehicle crashes. Ahmed et al. (2012) investigated the effect of the interaction between 

roadway geometric features and real-time weather and traffic data on the occurrence of 

crashes on a mountainous freeway. They found that geometric factors were significant in all 

seasons. Crash likelihood could double during the snowy season due to slick pavement 

conditions and steep grades, and when combined, produced a hazardous road surface On the 

other hand, Hojati et al. (2012) presented a framework to exhaustively mine traffic-incident 

data and directed subsequent analysis toward an incident delay and travel-time reliability 

model.  

 

Though there are several proposed models that are highly efficient, they cannot be applied to 

other cases because different studies call for the use of different variables. As such, results 

may not be transferable across different locations. Data collection and reporting process have 

also been incommensurate. While the findings of previous studies will not reduce the number 

of crashes/incidents, they will reduce their effects. 

 

3.3 Overview of Study Corridors and Data Sets 

 

3.3.1 Description of Study Corridors 

This study examines the impacts of crashes along northbound and southbound I-65 in the 

Louisville metropolitan area. The study segment is 5.6 miles long in the northbound direction 

and 5.4 miles long in the southbound direction (Figure 5). The data environment from two 

sources contains one year of data (2012). Data are available for each day, logged at 15-

minute intervals.  
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Figure 5: Study Corridor of I-65 

3.3.2 TRIMARC Data 

TRIMARC is a regional ITS data source designed to improve the performance of the freeway 

system in metropolitan Louisville, which extends into Southern Indiana. The TRIMARC data 

environment contains time, speed, volume, and lane occupancy data for each day. This 

information was recorded at 15-minute intervals along each detector section. Data were 

originally recorded in 30-second slots. The TRIMARC server aggregated them every 15 

minutes. There are 15 TRIMARC sensors located on I-65 N and 11 sensors on I-65 S. The 

average spacing between two sensors is approximately 0.4 mile. Figure 6 maps the sensor 

locations on I-65 N. 
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Figure 6: Location of TRIMARC Sensors on I-65N 

The TRIMARC data environment contains incident data: the location, direction, time, 

incident type, duration, and information on blocked lanes. To interpret the effect of crashes, 

accident crash-affected time slices (15 minutes) are identified based on the duration of an 

incident.  

 

3.3.3 NAVTEQ Data 

NAVTEQ speed information data are found in the smart driver network, which aggregates 

traffic data from probe vehicles. These data were used only for I-65 N, from milepoint 131.2 

to milepoint 136.6. NAVTEQ data are aggregated by weekday for specific months. 
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3.4 Methodology 

 

3.4.1 Visualization of Traffic Data 

To analyze the impact of crashes on traffic, the team built a visualization tool in Microsoft 

Excel. For TRIMARC data, the model relied on vehicle speed and the location of sensors. 

The horizontal axis represented the time of the day and the vertical axis showed the distance, 

or the location of the sensors/length of the segment.  A space-time velocity map (also known 

as a heat map) recorded average speeds on those segments at different times of the day. 

Using this heat map, the user can input the date and find the traffic speed at different times of 

day. The heat map also contained a link between the incident data and the TRIMARC data, 

so that inputting an incident identifier (Incident ID) generated incident information and 

corresponding traffic speed for that day. Ultimately, this heat map increased visual 

understanding of the crash impacts. 

 

3.4.2 Influencing Factor Analysis 

Travel rates (seconds/mile) were treated as a measure of effectiveness to understand how 

crashes affect the travel rate. This analysis can guide agencies toward improvements in the 

operation of road networks. Travel time reliability monitoring systems allow agencies to 

enhance system reliability. For example, when an agency experiences unreliable travel times 

because of indents, the agency may increase its spending on incident management systems 

and safety improvements. Conducting the Influencing Factor Analysis required the following 

steps: 

 

• Select the region or facilities of interest and study period 
• Compile travel rate data for each facility 
• Identify what types of nonrecurring events (peak/off-peak accident, different types of 

accident etc.) are present in the data 
• Develop cumulative distribution functions (CDFs) of travel rate (TR) for each 

combination of nonrecurring events  
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3.4.3 Travel Time Reliability Measurements 

Significant research on travel time reliability has resulted in several proposed reliability 

measures. There is an ongoing debate over which reliability measure is the most effective. 

Lomax et al. (2003) reviewed existing travel time reliability measures, and categorized them 

into four main categories: statistical range measures, buffer measures, tardy-trip indicators 

and probabilistic measures. In this study, the buffer and planning time indices proposed by 

Lomax et al. (2003) were used to measure travel time reliability. 

 

Buffer Index is the amount of extra time that a driver should add to their average travel time 

to ensure an on-time arrival. The Buffer Index (BI) is calculated by finding the difference 

between the 95th percentile travel rate and the average travel rate and dividing that number 

by the average travel rate: 

BI= (TR95th−μ)/μ 

Where TR95th is the 95th percentile travel rate and μ is the average travel rate. Units for both 

measures are seconds per mile. 

 

Planning Time Index (PTI) compares the total percentage of time to a driver’s free-flow 

travel time (ensuring a 95th percentile on-time arrival). PTI is calculated by dividing the 95th 

percentile travel rate by the free flow travel rate: 

PTI= TR95th/TRfree flow 

Where TR95th is the 95th percentile travel rate and TRfree flow is the free flow travel rate. Units 

are both in seconds per mile. 

 

The Travel Time Index (TTI) was also included in this study because it is a key criterion 

for mobility analysis. It represents the average time a driver would take to complete a trip 

during an incident, compared to free-flow conditions. It is calculated as the ratio of average 

travel rate across the entire year to travel rate at free-flow condition. 

TTI= μ / TRfree flow 

Where μ is the average travel rate and TRfree flow is the free flow travel rate, with both in 

seconds per mile. 
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Travel Time Variability (TTV) is the difference between the 90th and 10th percentile travel 

rate in different traffic condition: 

TTV= TR90th- TR10th 

Where TR90th is the 90th percentile travel rate and TR10th is the 10th percentile travel rate. 

 

3.5 Data Analysis and Results 

 

3.5.1 Space-Time Velocity Map/ Heat Map 

A space-time velocity map visualizes traffic data during a defined space-time window; it is 

also referred to as a heat (or color) map. Heat maps clarify actual conditions rather than 

focusing on numerical values. Figure 7 includes three panels:  

• 1st panel shows the incident information — when and where incident happened, how 
long it lasted, the type of incident, condition, lane blocked information, and other 
information. 

• 2nd panel shows the TRIMARC’s heat map  
• 3rd panel shows the travel time information at different time of the day  

A narrative description of Figure 7 would read as follows: On February 20, 2012, at 1:08 pm 

an accident occurred at milepoint 134.8. The crash blocked one lane of the freeway, and the 

accident zone was cleared at 2:19 pm. Traffic was interrupted for 71 minutes.  

 

Placing the incident identifier of the crash in our Excel framework, we created a space-time 

velocity map (heat map) of that day for TRIMARC data. Readers can easily spot the incident 

that took place at the sensor (MP 134.6); this accident affected times at the sensor both 

temporally and spatially. There are five horizontal red boxes (each red box equals 15 

minutes), meaning the crash’s impact lasted approximately 75 minutes where it occurred. It 

also affected the four immediate upstream sensors. In this region, a significant decline in 

vehicle speeds occurred. When the crash cleared, the traffic resumed normal flow. Based on 

the travel time information, it is evident the impact of the crash starts and ends at just about 

the same time as the crash’s start and end time. After clearing the accident, travel time 

returned to normal condition.  



 

 Developing an Integrated Framework for Safety and Mobility Analysis 37 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 7: Visualization Tool (Heat Map) 

Later, we developed a trajectory diagram (Figure 8) based on the TRIMARC data to illustrate 

how the corridor was impacted during the crash-affected period. It reveals how the 

shockwave propagated along the corridor during the crash period. 
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Figure 8: Trajectory Diagram 

 

We also created a heat map framework for NAVTEQ data to visualize the crash’s impact. 

Given that NAVTEQ data are aggregated weekly for a specific month, we aggregated our 

TRIMARC data in NAVTEQ format and built another space-time velocity map for 

TRIMARC. This map displays every day’s traffic speed and its weekly aggregation level. 

We then connected that heat map with incident data to analyze every accident just by putting 

in incident identifier. For example; Figure 9, 10, 11, and 12 are traffic speeds for the 

individual day (Friday) in October. Figure 13 aggregates all Fridays in October based on the 

TRIMARC data.  

Figure 14 is the heat map for NAVTEQ data, which aggregates October Fridays. Analyzing 

traffic for each Friday in October showed that crashes happened on October 26 (Figure 12). 

Both heat maps (TRIMARC data in Figure 13 and NAVTEQ data in Figure 14) reveal the 

impact of those crashes on weekly aggregated speed at the incident sites. Heat maps enhance 

our visual understanding of the impact of crashes. Visual intuition is preferable to examining 

numerical information. 
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Figure 9: October 5, 2012; Friday- No crashes 

 
 

Figure 10: October 12, 2012; Friday- No crashes 

 
 

Figure 11: October 19, 2012; Friday- No crashes 

 

 12am                                 3am                          6am                                  9am                            12pm                             3pm                              6pm                               9pm                  11pm                                  

 12am                                 3am                          6am                                  9am                            12pm                             3pm                              6pm                               9pm                  11pm                                  

 12am                                 3am                          6am                                  9am                            12pm                             3pm                              6pm                               9pm                  11pm                                  



 

 Developing an Integrated Framework for Safety and Mobility Analysis 40 

 
 

Figure 12: October 26, 2012; Friday- Crash 

 

 
Figure 13: October_Friday (TRIMARC) 

 

 

Figure 14: October_Friday (NAVTEQ) 
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3.5.2 Influencing Factor Analysis: 

Next, we analyzed the impact of crashes on I-65 N and S. Travel rate is considered as a 

measure of effectiveness to understand how a crash influences traffic flow. 

     
Figure 15: Average Travel Rate (sec/mile) 

First, we calculated the 2012 daily travel rate (sec/mile) (based on TRIMARC speed data of 

15-minute intervals). Travel rates were then separated into two groups: peak period and off-

peak period travel rate. The morning and afternoon peak periods occurred between 6 AM and 

9 AM and 4 PM and 7 PM, respectively. Our analysis was based on the crashes in the study 

segment. Peak travel rates were grouped into two classes: one containing the 15- minute 

travel rates that were influenced by crashes (termed “peak, crash”) and the other travel rates 

during periods that were unaffected by crashes (“peak, no crash”). Time slices impacted by 

crashes were selected based on incident duration. Off-peak travel rates were also separated 

into two groups: off-peak, no crash, and off-peak crash. As Figure 15 indicates, during a 

crash, the travel rate increases significantly over to the no-crash condition. Crashes during 

peak periods increase travel rates (which means a higher delay) for both directions on the 

interstate. 

 

Figures 16 and 17 depict a CDF of travel rate; they tell a better story about route 

performance. Consider a travel rate of 80 sec/mile. According I-65N (Figure 16), more than 
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while 83 percent of vehicles travel at this rate during peak hours when there are no crashes. 

However, if a crash occurred during an off-peak period, only 65 percent of vehicles could 

travel at 80 sec/mile. If a crash happened during the peak period, the situation worsened. 

Only 43 percent of vehicles could achieve that travel rate. Similar trends were observed for I-

65 S (Figure 17). Table 6 summarizes this information for a travel rate of 80 sec/mile.  

Table 6: Comparison Chart 

Route Off-Peak, No 

Crash 

Peak, No 

Crash. 

Off-Peak, Crash Peak, Crash 

I-65N_TRIMARC 96% 83% 65% 43% 

I-65S_TRIMARC 97% 90% 69% 44% 

 

 
Figure 16: CDF of Travel Rates for I-65N 
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Figure 17: CDF of Travel Rates for I-65S 
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trends were evident on I-65 S (Figure 19). Table 7 compares information for a travel rate of 

80 sec/mile.  

Table 7: Comparison Chart 

Route No Crash Single-Lane Crash Shoulder Crash Multi-Lane Crash 

I-65N_TRIMARC 92% 58% 54% 44% 

I-65S_TRIMARC 96% 58% 52% 52% 

 

However, there was an exception on I-65 S (Figure 19). In this data set, all three crash types 

had a comparable impact on travel rate. Although somewhat counterintuitive, incidents that 

blocked a single lane or just the shoulder produced slowdowns commensurate with crashes 

that closed multiple lanes.  

 
Figure 18: CDF of Travel Rates for I-65N 
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Figure 19: CDF of Travel Rates for I-65S 
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buffer index increased by a multiple of three, PTI by two, and TTI by about 40 percent 

compared to free flowing conditions. It took about 40 percent more time to navigate these 

segments when there was a crash blocking one lane, compared to normal travel conditions. 

Therefore, drivers should add about 80 percent more buffer time to ensure on-time arrival. 

 

         
Figure 20: Travel Time Variability (sec./mile) for Different Types of Crash 

         

Figure 21: Buffer Index for Different Types of Crashes 
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During normal conditions, TTV was approximately 10 sec/mile, but when crashes blocked 

one lane, it increased to 60-75 sec/mile.  

 

Impact of a Crash with only Shoulder or Zero Lanes Blocked  

Crashes that only block the shoulder had a similar effect as crashes that blocked a single lane. 

They also had a larger impact on reliability measures compared to free flowing conditions.  

       
Figure 22: Planning Time Index for Different Types of Crashes 

          
Figure 23: Travel Time Index for Different Types of Crashes 
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All criteria were similar when crashes blocked one lane. Like crashes that only blocked the 

shoulder, TTI increased by about 40 percent. Under these conditions, drivers will spend 

about 40 percent more time traveling than free flow traffic and should add about 80 percent 

more time (BI) to ensure on-time arrival. During normal conditions, TTV was 10 sec/mile, 

but when a crash blocked a single lane, this grew to 65 to 80 sec/mile.  

 

Impact of a Crash with Multiple Lanes Blocked  

Crashes that blocked multiple lanes had the largest influences on TTV, Buffer Index, PTI, 

and TTI. On I-65N, TTV increased by a factor of nine when a crash shuttered multiple lanes. 

The buffer index increased 4 times, PTI grew about 2.5 times, and TTI increased 

approximately 40-50 percent. As such, it took 40-50 percent more time to navigate this 

segment when multiple lanes were impassable, compared to normal conditions.  During 

normal conditions TTV was 10 sec/mile but when crashes blocked multiple lanes, it climbed 

to more than 90 sec/mile. However, there was an outlier in the I-65 S data set. When multiple 

lanes were blocked, there were lower values across all reliability measures compared to when 

a crash blocked one lane, just the shoulder, and/or zero lanes. 

 

Impact of Crashes at Different Times of the Day 

Reliability analysis measures the impacts of crashes based on the time of day they occur. 

When crashes were grouped according to peak and off-peak periods and compared to free 

flow traffic conditions for the corresponding period, crashes yielded a higher index on all 

reliability measures. 
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Figure 24: Travel Time Variability (sec/mile) for Crashes at Different Times of the Day 

From TTV (Figure 24) measures, we found that during off-peak hours when there were no 

crashes TTV was about 8 sec/mile. When a crash took place during off-peak hours, TTV 

increased to 45-60 sec/mile. 

   
Figure 25: Buffer Index for Crashes at Different Times of the Day 
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off-peak hours; for peak hours, this increased to 100 percent. Also the PTI (Figure 26) 

increased between 2.25 to 3 during crash condition. Under these conditions, a driver would 

require 2.25 to 3 times more travel time than necessary during free flowing traffic to ensure a 

95th percentile on-time arrival. When crashes occurred during off-peak times, TTI was about 

1.3 and during peak crashes it rose to 1.5 (Figure 27).  

     
Figure 26: Planning Time Index for Crashes at Different Times of the Day 

    
Figure 27: Travel Time Index for Crashes at Different Times of the Day 
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3.5.4 Variability of Travel Rates Due to Crashes at Different Times of the Day 

To determine the dependency of travel rate on the time of day that a crash took place, we 

filtered the 15-minute intervals during which crashes occurred from the data sets and plotted 

travel rate (sec/mile) versus time of the day. Crashes that affected travel rates were divided 

into three groups (crashes blocking one lane, crashes blocking multiple lanes, and crashes 

 

 

 
Figure 28: Variability of Travel Rate Due to Crashes 
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blocking only the shoulder and/or zero lanes). As Figure 28 indicates, if crashes happened 

during the late-afternoon hours, it caused more variability and higher travel rates. Multi-lane 

crashes also caused more variability and higher travel rates during any time of the day. 

Crashes that obstructed a single lane or the shoulder accidents showed a similar pattern, 

except for a few cases where crashes that only blocked the shoulder had greater variability 

and higher travel rates than single-lane crashes. The travel rate versus time of the day plot 

(Figure 28) provides clear insights into how travel rates vary due to time of the day and 

different crash types. 

 

3.5.5 Temporal coverage: 

We examined the temporal coverage of different TRIMARC sensors on I-65 N and S. Two 

steps were used to perform this analysis — first, we derived temporal coverage for individual 

sensors, and second, we calculated temporal coverage for different times of the day. For the 

TRIMARC dataset shown in Figure 29, temporal coverage for individual sensor was 

uniform. It varied from 75 to 87 percent. For the majority of sensors, coverage exceeded 80 

percent. When we computed the temporal coverage at different times of the day, we found 

that coverage was greater than 80 percent over the entire day. TRIMARC has better coverage 

for both individual sensors and at different times of the day, this phenomenon observed on 

both directions of I-65. 
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Figure 29: Temporal Coverage of TRIMARC Dataset 
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3.6 Conclusions 

Our application of Big Data used several analyses to study the impacts of traffic crashes on 

travel time reliability/variability, variation in crash impact during peak/off-peak period, and 

different crash types. Visualization tools (i.e., heat maps) illustrated the effects of crashes on 

traffic flow. These tools promise to enhance our visual understanding of the impact of 

crashes. Our analysis yielded the following conclusions: 

 Crashes significantly impact traffic movements, as suggested by the heat maps. They 
clearly visualize how crashes affect traffic temporally and spatially. 

 Crashes negatively impact travel time reliability. TTV, TTI, PTI and buffer index 
values all increase to some extent during crash condition. 

 The CDF of travel rates tells a better story about the impacts of crashes — it shows 
to what extent crashes influenced travel rates during peak and off-peak periods. 

 Among the different crash scenarios, crashes that blocked multiple lanes induce the 
most significant negative impacts on travel rate. Compared to normal conditions, 
when 83 to 96 percent of vehicles could travel at a specified travel rate, only 9 to 42 
percent of vehicles could travel at that rate during multi-lane crashes. TTV, TTI, PTI, 
and the Buffer Index all showed highest values during multi-lane accidents. 

 Crashes that blocked an individual lane or just the shoulder produced similar impacts 
on travel rates for both data sets and in both directions. 

 Crashes that occurred in the afternoon (3PM–6PM) produced greater variability and 
higher travel rates under all crash scenarios.  Multi-lane crashes led to higher 
variability and larger travel rates during any time of the day. 

Operation efficiency and traffic safety are considered as the most important elements among 

highway system performance measurement. Traffic congestion serves as a proxy for 

efficiency, and crash analysis can be used to evaluate highway safety. With the advances in 

Big Data, improving operations and safety in real-time is now possible. However, to fully 

realize the power of this data, we need develop more uses for these data. This chapter has 

illustrated how large data sets can be analyzed with innovative methods. Doing so will 

improve our understanding of crashes, their impacts, and ultimately their distribution in 

spatial temporal domain. 
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APPENDIX A 
Data.gov Results 

A&I - Crash Statistics: Trends in Motor Vehicle Crashes (1975 - 2000) 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures.(http://catalog.data.gov/dataset/ai-crash-statistics-trends-in-

motor-vehicle-crashes-1975-2000) 

A&I - Crash Statistics: National Summary of Large Trucks and Buses Involved in 

Crashes, 2006 - 2010 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures. (http://catalog.data.gov/dataset/ai-crash-statistics-national-

summary-of-large-trucks-and-buses-involved-in-crash) 

A&I - Crash Statistics: State Profiles 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures. (http://catalog.data.gov/dataset/ai-crash-statistics-state-profiles) 

A&I - Crash Statistics: Large Truck and Bus Crash Facts 2009: Early Release - 

Vehicles: Data Tables 47-58 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

http://catalog.data.gov/dataset/ai-crash-statistics-trends-in-motor-vehicle-crashes-1975-2000
http://catalog.data.gov/dataset/ai-crash-statistics-trends-in-motor-vehicle-crashes-1975-2000
http://catalog.data.gov/dataset/ai-crash-statistics-national-summary-of-large-trucks-and-buses-involved-in-crash
http://catalog.data.gov/dataset/ai-crash-statistics-national-summary-of-large-trucks-and-buses-involved-in-crash
http://catalog.data.gov/dataset/ai-crash-statistics-state-profiles
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two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures. (http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-

and-bus-crash-facts-2009-early-release-vehicles-) 

A&I - Program Effectiveness: Compliance Review Effectiveness Model 

The objective of the FMCSA's Program Effectiveness research is to measure the 

effectiveness of the FMCSA Safety Programs. The Compliance Review Effectiveness Model 

and the Intervention Model provide estimates of the beneficial impact of these programs on 

reducing crashes resulting in lives saved and injuries avoided. The Resource Allocation 

model utilizes the results of these two models to analyze the allocation of state resources. 

(http://catalog.data.gov/dataset/ai-program-effectiveness-compliance-review-effectiveness-

model) 

A&I - Safety Programs: Data Mining Tool 

This area of the website provides information on three of the safety programs established by 

FMCSA to support this mission. The three programs covered by this area include reviews, 

roadside inspections of commercial vehicles and drivers, and traffic enforcement stops of 

CMVs operating in an unsafe manner. Each program is implemented in conjunction with the 

states and devoted to improving motor carrier safety by reducing the number and severity of 

crashes involving large trucks and buses. (http://catalog.data.gov/dataset/ai-safety-programs-

data-mining-tool) 

A&I - Crash Statistics: Trends in Fatal Crash Data by State, 1996 - 2008 (complete 

report) 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures. (http://catalog.data.gov/dataset/ai-crash-statistics-trends-in-fatal-

crash-data-by-state-1996-2008-complete-report) 

http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-and-bus-crash-facts-2009-early-release-vehicles-
http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-and-bus-crash-facts-2009-early-release-vehicles-
http://catalog.data.gov/dataset/ai-program-effectiveness-compliance-review-effectiveness-model
http://catalog.data.gov/dataset/ai-program-effectiveness-compliance-review-effectiveness-model
http://catalog.data.gov/dataset/ai-safety-programs-data-mining-tool
http://catalog.data.gov/dataset/ai-safety-programs-data-mining-tool
http://catalog.data.gov/dataset/ai-crash-statistics-trends-in-fatal-crash-data-by-state-1996-2008-complete-repor
http://catalog.data.gov/dataset/ai-crash-statistics-trends-in-fatal-crash-data-by-state-1996-2008-complete-repor
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A&I - Crash Statistics: Large Truck and Bus Crash Facts 2009: Early Release - People: 

Data Tables 59-70 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures. (http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-

and-bus-crash-facts-2009-early-release-people-da) 

A&I - NAFTA Safety Stats: NAFTA Safety Stats 

NAFTA Safety Stats presents information and statistics on the U.S. operations of all U.S. 

registered interstate and intrastate motor carriers broken out by national domicile of the 

carrier. The information and statistics are presented based on the carrier's domicile within 

each of the three North American Free Trade Agreement (NAFTA) nations: the United 

States, Canada, and Mexico. The reports present motor carrier safety statistics for 2005-2009. 

(http://catalog.data.gov/dataset/ai-nafta-safety-stats-nafta-safety-stats) 

A&I - Crash Statistics: Large Truck and Bus Crash Facts 2009: Early Release - 

Trends: Data Tables 1-34 and Graphs 1-8 

Crash Statistics are summarized crash statistics for large trucks and buses involved in fatal 

and non-fatal Crashes that occurred in the United States. These statistics are derived from 

two sources: the Fatality Analysis Reporting System (FARS) and the Motor Carrier 

Management Information System (MCMIS). Crash Statistics contain information that can be 

used to identify safety problems in specific geographical areas or to compare state statistics 

to the national crash figures. (http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-

and-bus-crash-facts-2009-early-release-trends-da) 

Carrier Safety Measurement System (CSMS, or SMS) - Raw Data: HAZMAT Motor 

Carriers 

The Federal Motor Carrier Safety Administration's (FMCSA) Safety Management System 

(SMS) is an automated data system used by FMCSA to monitor motor carrier on-road safety 

performance. FMCSA analyzes safety performance by grouping carrier data in the SMS into 

http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-and-bus-crash-facts-2009-early-release-people-da
http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-and-bus-crash-facts-2009-early-release-people-da
http://catalog.data.gov/dataset/ai-nafta-safety-stats-nafta-safety-stats
http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-and-bus-crash-facts-2009-early-release-trends-da
http://catalog.data.gov/dataset/ai-crash-statistics-large-truck-and-bus-crash-facts-2009-early-release-trends-da
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seven Behavioral Analysis and Safety Improvement Categories (BASICs) which are, in turn, 

used to identify potential safety problems with individual carriers and determine when an 

enforcement intervention might be appropriate. (http://catalog.data.gov/dataset/carrier-safety-

measurement-system-csms-or-sms-raw-data-hazmat-motor-carriers-614e0) 

Carrier Safety Measurement System (CSMS, or SMS) - Raw Data: Intrastate Non-

HAZMAT 

The Federal Motor Carrier Safety Administration's (FMCSA) Safety Management System 

(SMS) is an automated data system used by FMCSA to monitor motor carrier on-road safety 

performance. FMCSA analyzes safety performance by grouping carrier data in the SMS into 

seven Behavioral Analysis and Safety Improvement Categories (BASICs) which are, in turn, 

used to identify potential safety problems with individual carriers and determine when an 

enforcement intervention might be appropriate. (http://catalog.data.gov/dataset/carrier-safety-

measurement-system-csms-or-sms-raw-data-intrastate-non-hazmat) 

Carrier Safety Measurement System (CSMS, or SMS) - Raw Data: Intrastate Non-

HAZMAT 

The Federal Motor Carrier Safety Administration's (FMCSA) Safety Management System 

(SMS) is an automated data system used by FMCSA to monitor motor carrier on-road safety 

performance. FMCSA analyzes safety performance by grouping carrier data in the SMS into 

seven Behavioral Analysis and Safety Improvement Categories (BASICs) which are, in turn, 

used to identify potential safety problems with individual carriers and determine when an 

enforcement intervention might be appropriate. (http://catalog.data.gov/dataset/carrier-safety-

measurement-system-csms-or-sms-raw-data-intrastate-non-hazmat-f0526) 

Fatality Analysis Reporting System (FARS): FTP Raw Data 

The program collects data for analysis of traffic safety crashes to identify problems, and 

evaluate countermeasures leading to reducing injuries and property damage resulting from 

motor vehicle crashes. The FARS dataset contains descriptions, in standard format, of each 

fatal crash reported. To qualify for inclusion, a crash must involve a motor vehicle traveling a 

traffic-way customarily open to the public and resulting in the death of a person (occupant of 

a vehicle or a non-motorist) within 30 days of the crash. Each crash has more than 100 coded 

data elements that characterize the crash, the vehicles, and the people involved. The specific 

http://catalog.data.gov/dataset/carrier-safety-measurement-system-csms-or-sms-raw-data-hazmat-motor-carriers-614e0
http://catalog.data.gov/dataset/carrier-safety-measurement-system-csms-or-sms-raw-data-hazmat-motor-carriers-614e0
http://catalog.data.gov/dataset/carrier-safety-measurement-system-csms-or-sms-raw-data-intrastate-non-hazmat
http://catalog.data.gov/dataset/carrier-safety-measurement-system-csms-or-sms-raw-data-intrastate-non-hazmat
http://catalog.data.gov/dataset/carrier-safety-measurement-system-csms-or-sms-raw-data-intrastate-non-hazmat-f0526
http://catalog.data.gov/dataset/carrier-safety-measurement-system-csms-or-sms-raw-data-intrastate-non-hazmat-f0526
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data elements may be changed slightly each year to conform to the changing user needs, 

vehicle characteristics and highway safety emphasis areas. The type of information that 

FARS, a major application, processes is therefore motor vehicle crash data. 

(http://catalog.data.gov/dataset/fatality-analysis-reporting-system-fars-ftp-raw-data) 

Fatality Analysis Reporting System (FARS ): Online Query Tool 

The program collects data for analysis of traffic safety crashes to identify problems, and 

evaluate countermeasures leading to reducing injuries and property damage resulting from 

motor vehicle crashes. The FARS dataset contains descriptions, in standard format, of each 

fatal crash reported. To qualify for inclusion, a crash must involve a motor vehicle traveling a 

traffic-way customarily open to the public and resulting in the death of a person (occupant of 

a vehicle or a non-motorist) within 30 days of the crash. Each crash has more than 100 coded 

data elements that characterize the crash, the vehicles, and the people involved. The specific 

data elements may be changed slightly each year to conform to the changing user needs, 

vehicle characteristics and highway safety emphasis areas. The type of information that 

FARS, a major application, processes is therefore motor vehicle crash data. 

(http://catalog.data.gov/dataset/fatality-analysis-reporting-system-fars-online-query-tool) 

Highway Rail Accidents: Accident/Incident Overview by State/Region 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-

accident-incident-overview-by-state-region) 

Highway Rail Accidents: Hwy/Rail Table By Railroad 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-hwy-

rail-table-by-railroad) 

Highway Rail Accidents: Hwy/Rail Incidents Summary Tables 

http://catalog.data.gov/dataset/fatality-analysis-reporting-system-fars-ftp-raw-data
http://catalog.data.gov/dataset/fatality-analysis-reporting-system-fars-online-query-tool
http://catalog.data.gov/dataset/highway-rail-accidents-accident-incident-overview-by-state-region
http://catalog.data.gov/dataset/highway-rail-accidents-accident-incident-overview-by-state-region
http://catalog.data.gov/dataset/highway-rail-accidents-hwy-rail-table-by-railroad
http://catalog.data.gov/dataset/highway-rail-accidents-hwy-rail-table-by-railroad
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This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-hwy-

rail-incidents-summary-tables) 

Highway Rail Accidents: Highway-Rail Crossing Accident 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-

highway-rail-crossing-accident) 

Highway Rail Accidents: Frequency of Crossing Collisions 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-

frequency-of-crossing-collisions) 

Highway Rail Accidents: Master Web Service 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-master-

web-service) 

Highway Rail Accidents: Accident/Incident Overview 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-

accident-incident-overview) 

 

http://catalog.data.gov/dataset/highway-rail-accidents-hwy-rail-incidents-summary-tables
http://catalog.data.gov/dataset/highway-rail-accidents-hwy-rail-incidents-summary-tables
http://catalog.data.gov/dataset/highway-rail-accidents-highway-rail-crossing-accident
http://catalog.data.gov/dataset/highway-rail-accidents-highway-rail-crossing-accident
http://catalog.data.gov/dataset/highway-rail-accidents-frequency-of-crossing-collisions
http://catalog.data.gov/dataset/highway-rail-accidents-frequency-of-crossing-collisions
http://catalog.data.gov/dataset/highway-rail-accidents-master-web-service
http://catalog.data.gov/dataset/highway-rail-accidents-master-web-service
http://catalog.data.gov/dataset/highway-rail-accidents-accident-incident-overview
http://catalog.data.gov/dataset/highway-rail-accidents-accident-incident-overview
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Highway Rail Accidents: Overview Charts By Railroad 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year.  (http://catalog.data.gov/dataset/highway-rail-accidents-

overview-charts-by-railroad) 

Highway Rail Accidents: Overview Charts By State 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-

overview-charts-by-state) 

Highway Rail Accidents: Highway-Rail Crossings 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-

highway-rail-crossings) 

Highway Rail Accidents: Hwy/Rail Detail Report 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-hwy-

rail-detail-report) 

Highway Rail Accidents: Ten Year Accident/Incident Overview by 

Railroad/Region/State/County 

This file contains reported cases of impacts between on-track equipment and any user of a 

public or private highway-rail intersection. National files from 1975 through the current year 

are available for download. In addition, individual files by State are available for the years 

http://catalog.data.gov/dataset/highway-rail-accidents-overview-charts-by-railroad
http://catalog.data.gov/dataset/highway-rail-accidents-overview-charts-by-railroad
http://catalog.data.gov/dataset/highway-rail-accidents-overview-charts-by-state
http://catalog.data.gov/dataset/highway-rail-accidents-overview-charts-by-state
http://catalog.data.gov/dataset/highway-rail-accidents-highway-rail-crossings
http://catalog.data.gov/dataset/highway-rail-accidents-highway-rail-crossings
http://catalog.data.gov/dataset/highway-rail-accidents-hwy-rail-detail-report
http://catalog.data.gov/dataset/highway-rail-accidents-hwy-rail-detail-report
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1991 through the current year. (http://catalog.data.gov/dataset/highway-rail-accidents-ten-

year-accident-incident-overview-by-railroad-region-state-county) 

Hazmat 10 Year Incident Summary Reports: Data Mining Tool 

Series of Incident data and summary statistics reports produced which provide statistical 

information on incidents by type, year, geographical location, and others. The data provided 

is that from the Hazardous Materials Incident Report Form 5800.1 

(http://catalog.data.gov/dataset/hazmat-10-year-incident-summary-reports-data-mining-tool) 

Hazmat Yearly Incident Summary Reports: Data Mining Tool 

Series of Incident data and summary statistics reports produced which provide statistical 

information on incidents by type, year, geographical location, and others. The data provided 

is that from the Hazardous Materials Incident Report Form 5800.1 

(http://catalog.data.gov/dataset/hazmat-yearly-incident-summary-reports-data-mining-tool) 

Highway Statistics: Data Browser 

The Highway Statistics is a national transportation publication providing annual information 

covering highway travel, travel condition, infrastructure performance, highway financing, 

highway fuel usage, registered vehicles, and licensed drivers. 

(http://catalog.data.gov/dataset/highway-statistics-data-browser) 

Large Truck Crash Causation Study (LTCCS): File 1 (TXT) 

The Large Truck Crash Causation Study (LTCCS) is based on a three-year data collection 

project conducted by the Federal Motor Carrier Safety Administration (FMCSA) and the 

National Highway Traffic Safety Administration (NHTSA) of the U.S. Department of 

Transportation (DOT). LTCCS is the first-ever national study to attempt to determine the 

critical events and associated factors that contribute to serious large truck crashes allowing 

DOT and others to implement effective countermeasures to reduce the occurrence and 

severity of these crashes. (http://catalog.data.gov/dataset/large-truck-crash-causation-study-

ltccs-file-1-txt) 

Large Truck Crash Causation Study (LTCCS): File 2 (Excel) 

The Large Truck* Crash Causation Study (LTCCS) is based on a three-year data collection 

project conducted by the Federal Motor Carrier Safety Administration (FMCSA) and the 

National Highway Traffic Safety Administration (NHTSA) of the U.S. Department of 

http://catalog.data.gov/dataset/highway-rail-accidents-ten-year-accident-incident-overview-by-railroad-region-state-county
http://catalog.data.gov/dataset/highway-rail-accidents-ten-year-accident-incident-overview-by-railroad-region-state-county
http://catalog.data.gov/dataset/hazmat-10-year-incident-summary-reports-data-mining-tool
http://catalog.data.gov/dataset/hazmat-yearly-incident-summary-reports-data-mining-tool
http://catalog.data.gov/dataset/highway-statistics-data-browser
http://catalog.data.gov/dataset/large-truck-crash-causation-study-ltccs-file-1-txt
http://catalog.data.gov/dataset/large-truck-crash-causation-study-ltccs-file-1-txt
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Transportation (DOT). LTCCS is the first-ever national study to attempt to determine the 

critical events and associated factors that contribute to serious large truck crashes allowing 

DOT and others to implement effective countermeasures to reduce the occurrence and 

severity of these crashes. (http://catalog.data.gov/dataset/large-truck-crash-causation-study-

ltccs-file-2-excel) 

Motor Carrier Compliance Reviews and Safety Audits: Data Mining Tool 

Contains data on compliance reviews and new entrant safety audits performed by FMCSA 

and State grantees.(http://catalog.data.gov/dataset/motor-carrier-compliance-reviews-and-

safety-audits-data-mining-tool) 

 

NHTSA's Office of Defects Investigation (ODI) - Early Warning Reporting: EWR 

Manufacturers of motor vehicles, motor vehicle equipment, child safety systems, and tires 

are required to submit Early Warning Reporting (EWR) information and documentation to 

NHTSA in order to comply with the Transportation Recall, Enhancement, Accountability 

and Documentation (TREAD) act. Public or non-confidential manufacturer EWR data is 

accessible from the web site.Use the EWR Data Search pages to search for manufacturer 

EWR data associated with Production (for Light Vehicles only), Property Damage, and 

Death and Injury records. 

NHTSA's Office of Defects Investigation (ODI) - Recalls: NHTSA API 

Manufacturers who determine that a product or piece of original equipment either has a 

safety defect or is not in compliance with Federal safety standards are required to notify the 

National Highway Traffic Safety Administration (NHTSA) within 5 business days. NHTSA 

requires that manufacturers file a Defect and Noncompliance report as well as quarterly 

recall status reports, in compliance with Federal Regulation 49 (the National Traffic and 

Motor Safety Act) Part 573, which identifies the requirements for safety recalls. This 

information is stored in the NHTSA database. Use this data to search for recall information 

related to:- Specific NHTSA campaigns - Product types 

(http://catalog.data.gov/dataset/nhtsas-office-of-defects-investigation-odi-recalls-nhtsa-api-

1e65f) 

 

http://catalog.data.gov/dataset/large-truck-crash-causation-study-ltccs-file-2-excel
http://catalog.data.gov/dataset/large-truck-crash-causation-study-ltccs-file-2-excel
http://catalog.data.gov/dataset/motor-carrier-compliance-reviews-and-safety-audits-data-mining-tool
http://catalog.data.gov/dataset/motor-carrier-compliance-reviews-and-safety-audits-data-mining-tool
http://catalog.data.gov/dataset/nhtsas-office-of-defects-investigation-odi-recalls-nhtsa-api-1e65f
http://catalog.data.gov/dataset/nhtsas-office-of-defects-investigation-odi-recalls-nhtsa-api-1e65f
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New Car Assessment Program (NCAP) - 5 Star Safety Ratings: NHTSA FTP 

NCAP rates vehicles to determine crash worthiness and rollover safety. The safety ratings are 

gathered during controlled crash and rollover tests conducted at NHTSA research facilities. 

Vehicles with a rating of five stars indicate the highest safety rating, whereas a one star 

indicates the lowest rating.  (http://catalog.data.gov/dataset/new-car-assessment-program-

ncap-5-star-safety-ratings-nhtsa-ftp) 

New Car Assessment Program (NCAP) - 5 Star Safety Ratings: NHTSA API 

NCAP rates vehicles to determine crash worthiness and rollover safety. The safety ratings are 

gathered during controlled crash and rollover tests conducted at NHTSA research facilities. 

Vehicles with a rating of five stars indicate the highest safety rating, whereas a one star 

indicates the lowest rating. (http://catalog.data.gov/dataset/new-car-assessment-program-

ncap-5-star-safety-ratings-nhtsa-api-7cb17) 

New Car Assessment Program (NCAP) - 5 Star Safety Ratings: NHTSA API 

NCAP rates vehicles to determine crash worthiness and rollover safety. The safety ratings are 

gathered during controlled crash and rollover tests conducted at NHTSA research facilities. 

Vehicles with a rating of five stars indicate the highest safety rating, whereas a one star 

indicates the lowest rating. (http://catalog.data.gov/dataset/new-car-assessment-program-

ncap-5-star-safety-ratings-nhtsa-api-8d8e3) 

New Car Assessment Program (NCAP) - 5 Star Safety Ratings: NHTSA OGD 

NCAP rates vehicles to determine crash worthiness and rollover safety. The safety ratings are 

gathered during controlled crash and rollover tests conducted at NHTSA research facilities. 

Vehicles with a rating of five stars indicate the highest safety rating, whereas a one star 

indicates the lowest rating. (http://catalog.data.gov/dataset/new-car-assessment-program-

ncap-5-star-safety-ratings-nhtsa-ogd) 

NTD Safety & Security Summary Data Set: Time Series 

Summary ("count") data submitted to the Safety & Security Module of the NTD. Reflects 

counts of incidents, fatalities, injuries, fires, collisions, etc. 

(http://catalog.data.gov/dataset/ntd-safety-security-summary-data-set-time-series) 

NTD Safety & Security Summary Data Set: Major Only Time Series 

http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-ftp
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-ftp
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-api-7cb17
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-api-7cb17
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-api-8d8e3
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-api-8d8e3
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-ogd
http://catalog.data.gov/dataset/new-car-assessment-program-ncap-5-star-safety-ratings-nhtsa-ogd
http://catalog.data.gov/dataset/ntd-safety-security-summary-data-set-time-series
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Summary ("count") data submitted to the Safety & Security Module of the NTD. Reflects 

counts of incidents, fatalities, injuries, fires, collisions, 

etc.(http://catalog.data.gov/dataset/ntd-safety-security-summary-data-set-major-only-time-

series) 

Preliminary Accident/Incident Data: Daily Data File 

Provides preliminary accident/incident data.(http://catalog.data.gov/dataset/preliminary-

accidentincident-data-daily-data-file) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://catalog.data.gov/dataset/ntd-safety-security-summary-data-set-major-only-time-series
http://catalog.data.gov/dataset/ntd-safety-security-summary-data-set-major-only-time-series
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APPENDIX B 
 1. FDOT 

Orlando 
2. Leesburg VA 3. Minnesota 

DOT 
4. San Diego 

Speed Time stamp, 
Longitude(deg), 
Latitude (deg),  
Elevation (m),  
Heading (deg) , 
 Count in 
milliseconds  
 Documented in 
spreadsheet 

  Time stamp, 
Longitude(deg), 
Latitude (deg), 
Heading (deg), 
(collected by 
GPS) 
 Documented in 
spreadsheet 

Flow & Lane 
Occupancy 

   5-minute, hourly, 
and daily 
aggregations on 
Freeway 
 Documented in 
spreadsheet 

Weather   Real time 
weather (Temp, 
Wind Speed, 
Visibility , 
Precipitation etc) 

Real time 
weather(Temp, 
Wind Speed, 
Visibility, 
Precipitation etc) 

Incident    
 

 Incident 
description by 
Highway patrol in 
Freeway, 
 Location 
 ALK Grid ID 
 Documented in 
spreadsheet 

GPS    ALK GPS data, 
 Collected at 3-
second intervals 
from users of 
CoPilot, 
link description 
 Documented in 
spreadsheet 

Other Basic Safety 
MsgbyVehicle 
Awareness 
Devices (VADs) 

Basic Safety 
MsgbyVehicle 
Awareness 
Devices (VADs) 

Vehicle to 
Infrastructure(V2I) 
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 5. Proof of 
Concept 

6.  (NCAR) 2009 7. (NCAR) 2010 8. Safety Pilot 
Model 

Speed  Individual 
OBE_ID 
Time stamp, 
Longitude(deg), 
Latitude (deg), 
 Documented in 
spreadsheet 

 Individual 
OBE_ID 
Time stamp, 
Longitude(deg), 
Latitude (deg), 
 Documented in 
spreadsheet 

 Individual 
OBE_ID 
Time stamp, 
Longitude(deg), 
Latitude (deg), 
 Documented in 
spreadsheet 

Time stamp, 
Longitude(deg), 
Latitude (deg),  
Elevation (m),  
Heading (deg) , 
contains trip-
level summaries 
 Distance from 
nearby vehicle & 
obstacle  
 Documented in 
spreadsheet 

Flow & Lane 
Occupancy 

    

Weather  Real time 
weather(Temp, 
Wind 
Speed&Direction 
Precipitation etc) 

 Real time 
weather(Temp, 
Wind 
Speed&Direction 
Precipitation etc) 

Real time 
weather(Temp, 
Wind 
Speed&Direction 
Precipitation etc) 

Real time 
weather(Temp, 
Wind 
Speed&Direction 
Precipitation etc) 

Incident     
GPS     
RSE Snapshot 
 
(Road Side 
Equipement ) 

 Taken every 5-
20s depending on 
veh. status  
Longitude(deg), 
Latitude (deg), 
 Speed 
 Acceleration 
 Bearing 
 Gradient 
 Origin- destin. 
etc 
 Documented in 
spreadsheet 
 

 Taken every 5-
20s depending on 
veh.  
Longitude(deg), 
Latitude (deg), 
 Speed 
 Acceleration 
 Bearing 
 Gradient 
 Origin- destin. 
etc 
 Documented in 
spreadsheet 
 Focused on Data 
duing rainy or 
snowy weather 
 

 Taken every 5-
20s depending on 
veh.  
Longitude(deg), 
Latitude (deg), 
 Speed 
 Acceleration 
 Bearing 
 Gradient 
 Origin- destin. 
etc 
 Documented in 
spreadsheet 
 Focused on 
comparing 
weather data bet. 
Veh. Sensors & 
Station  

 

Other  Test bed 
discription 

 Test bed 
discription 

 Test bed 
discription 

Basic Safety 
MsgbyVehicle 
Awareness 
Devices (VADs) 
  Potential 
Connected vehicle 
research data 
source 
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 9. Pasadena 10. Portland 11. Seattle 
Speed Time stamp, 

Longitude(deg), 
Latitude (deg),  
Elevation (m),  
Heading (deg)  
Link Capacity 
 Database (SQL format), 
 

  Freeway loop data 
  1hr, 5min, 15min & 
20s interval 
 volume 
Documented in 
spreadsheet 

 Seatle Sensys data 
which contains: speed , 
volume 
 Documented in 
spreadsheet 

Flow & Lane 
Occupancy 

 link and turn volumes in  
arterial System 
current volumes for 5 
minute intervals 
forecasted volumes for 30 
minute intervals 
 Database (SQL format), 
Plain Text and VISUM 
Files 

 Arterial volume and 
occpancy data by loop 
detector 
 Travel time data 
from Bluetooth radar 
 Documented in 
spreadsheet 

 Freeway  volume and 
occpancy data by loop 
detector 
 Arterial Travel time 
data every 5 minutes 
from Automatic 
Licence plate reader 
 Documented in 
spreadsheet 

Weather  Real time weather 
 Database (SQL files) and 
xml schema files 

Real time 
weather(Temp, Wind 
Speed&Direction , 
Humidity etc) 
 Documented in 
spreadsheet 

Real time 
weather(Temp, Wind 
Speed&Direction, 
Humidity etc) 
 Documented in 
spreadsheet 

Incident  Incident description by 
Highway patrol / county 
sherrif, 
 Location 
Severity 
 stored as an xml file, 
which is convertible in 
spreadsheet  

 Freeway Incident 
description from 
Oregon DOT ATMS. 
 several entities for 
each incident 
 Location 
Severity 
 Documented in 
spreadsheet 

 Incident description 
byHighway service  
patrol 
 Location 
Severity 
 Documented in 
spreadsheet 

GPS    
Other Turn Capacity and Delays  Transit Data (bus, 

metro, light rail) 
  schedule , stop 
event, passengers 
count 
 Documented in 
spreadsheet 

 Transit Data  
  Actual Bus arrival & 
scheduled time data. 
 Documented in 
spreadsheet 
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