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EXECUTIVE SUMMARY 

 

Transportation safety is a priority of the US Department of Transportation, with substantial 

resources devoted to reducing costs of injuries, fatalities, and property damage. The tools 

developed for addressing safety problems largely rely on post-crash analysis of the data, i.e., 

police reports integrated with road inventory and traffic data. Recently, a limited amount of 

naturalistic driving data has become available, providing insights into associated pre-crash 

factors. This study explores whether safety problems can be ameliorated by extracting useful 

information from a wider range of large-scale behavioral and sensor data, which is 

increasingly available in digital form. Indeed, the task of extracting information from large-

scale databases is challenging because of the enormous amounts of data involved, i.e., data 

from various sources that include travelers, vehicles, infrastructure and the environment 

coupled with social, economic and spatial data, collectively referred to as “Big Data.” 

Nevertheless, data-rich environments represent an opportunity for innovation in 

transportation system planning, design, operation and maintenance and toward achieving 

safety goals. This project develops a framework for the use of Big Data to facilitate safety 

monitoring, assessment and improvement, reporting on the first year efforts of the work 

undertaken in this major research initiative of the Southeastern Transportation Center.  

The research team assessed the quality of Big Data in terms of relevance to safety, 

variety of the databases, and their reliability/validity. While some of the Big Data identified 

and analyzed in this study are not routinely available in real-time operational safety 

monitoring and incident/accident management, such data are expected to become 

increasingly available. The data used in this study comes from a wide variety of sources that 

include: 

 Global Positioning System data on movements of individuals through time 

and space.  

 Regional surveys of travel behavior containing travel and socio-economic 

data. 

 Traffic data, i.e., traffic counts. 

 Socio-demographic information from Census (county and regional levels). 
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 Geographic information from various sources including Google Earth. 

 Basic safety messages exchanged between vehicles and infrastructure. 

 The study contributes by demonstrating a way to integrate data from multiple sources 

to explore links between naturalistic driving behaviors and various factors that are structured 

in hierarchies.  

The information needs of individual travelers and transportation system planners and 

managers were considered in developing the framework. Safety-enhancement 

strategies/solutions for individual users include delivering alerts, warnings, and control 

assists in crash-imminent situations. One way transportation system planners and managers 

can take advantage of Big Data is by accessing incoming data and examining measures of 

how people are driving overall in metropolitan areas. In line with their data needs, this report 

documents four major themes addressed by the project team: 

1) Data quality to explore how much information is lost when using sensor 

data at different sampling rates, and identifying data needs at the data 

collection stage; 

2) Characterizing driving behaviors as volatile or calm using large-scale 

sensor and behavioral data. Specifically, data about the volatility in 

driving (hard accelerations and braking) was explored. Over-aggressive 

driving situations were identified and GPS data from drivers was 

visualized.  

3) Structuring and integrating safety data from multiple sources. Data 

analysis included estimation of statistical models, and testing of 

hypotheses to explore associations between various factors and safety-

relevant driving decisions. Specifically, how driving volatility was 

correlated with driver, roadway, and vehicle factors was quantified using 

hierarchical models. The study further assessed and compared driving 

performance across geographic regions in the US. 

4) To provide driver feedback (alerts, warnings, and control assists), the 

study provides applications for safety monitoring under connected vehicle 
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environments, extracting useful information from Vehicle-to-Vehicle and 

Vehicle-to-Infrastructure communications.   

 This project makes both theoretical and empirical contributions by: 1) developing 

measures to characterizing instantaneous driving behaviors using high resolution sensor data, 

which could be a key component of the future Big Data analytics in transportation safety; 2) 

providing examples of structuring and integrating safety data from multiple sources and 

delivering applications for safety assessment, monitoring and improvement. Figure 1 shows 

the overall organization of the report and highlights the efforts undertaken in the first year. 

Big data visualization was part of several efforts, e.g., driving trajectories, instantaneous 

driving time use, acceleration and vehicular jerk distributions are visualized in two- and 

three-dimensions. 

 The report first discusses the appropriateness of sensor data that can be used for 

transportation safety studies, in terms of information loss when sampling sensor data. 

“Undersampling” can cause loss of information and misinterpretations of the data, but 

“oversampling” can waste storage and processing resources. Data from a driving simulator 

study collected at 20 Hertz are analyzed (N=718,481 data points from 35,924 seconds of 

driving tests). The results show that marginally more information is lost as data are sampled 

down from 20 Hz to 0.5 Hz. However, the relationship between loss of information and 

sampling rates is non-linear. The study provides a sound basis to help scientists easily 

identify data needs at the experimental design stage, and it has implications for designing 

monitoring systems. 

Second, an innovative way of characterizing driving behaviors using large-scale 

sensor data is provided. This effort contributes by leveraging a large-scale behavioral 

database to analyze short-term driving decisions and develop a new driver volatility index to 

measure the extent of variations in driving. The index captures variations in instantaneous 

driving behavior constrained by the performance of the vehicle from a decision-making 

perspective. Specifically, instantaneous driving decisions include maintaining speed, 

accelerating, decelerating, maintaining acceleration/deceleration, or jerks to vehicle, i.e., the 

decision to change marginal rate of acceleration or deceleration.  
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FIGURE 1 Report outline 
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Volatility in driving decisions, captured by jerky movements, is quantified using data 

collected in Atlanta, GA during 2011. The database contains 51,370 trips and their associated 

second-by-second speed data, totaling 36 million seconds. Rigorous statistical models 

explore correlates of volatility that include socioeconomic variables, travel context variables, 

and vehicle types. 

Third, ways of extracting, structuring and integrating data from multiple sources are 

explored. Under this effort, we demonstrate creation of a unique database by integrating data 

from four seemingly disparate sources that include two large-scale travel surveys, historical 

traffic counts from California and Georgia Department of Transportation, socio-demographic 

information from Census, and geographic information from Google Earth. The database 

provides a rich resource to test hypothesis and model driving behaviors at the micro-level, 

i.e., second-by-second. The data include 117,022 trips made by 4,560 drivers residing in 78 

counties of major metropolitan areas (Los Angeles, San Francisco, Sacramento, and Atlanta) 

across two states, representing various land use types and populations; all trips were recorded 

by in-vehicle GPS devices giving 90,759,197 second-by-second speed records. Appropriate 

multi-level models are estimated to extract valuable information from the data and study 

correlates of driving behaviors structured in hierarchies and compare driving performance 

across geographical regions. 

 Fourth, applications for safety monitoring under connected environments are 

developed. This effort is featured by exploring information embedded in basic safety 

messages (BSMs) transmitted between connected vehicles, and developing applications for 

delivering improved alerts, warnings, and control assistance using BSMs. A data analytic 

methodology extracts critical information from raw BSM data available from Safety Pilot 

Model Deployment (SPMD) underway in Ann Arbor, Michigan. The information extracted 

from BSM data captures extreme driving events such as hard accelerations and braking. This 

information can be provided to drivers, giving them instantaneous feedback about dangers in 

surrounding roadway environments; it can also provide control assistance. Thus, the study 

creates a framework for generating alerts, warnings, and control assistance from extreme 

events, transmittable through Vehicle-to-Vehicle and Vehicle-to-Infrastructure (or V2V and 

V2I) applications.  
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Research papers in refereed journals and conference presentations based on the 

results of efforts discussed above contributed directly to knowledge creation in the context of 

big data applications in safety. The presentations and publications related to this project 

include the following (with relevance of specific papers shown as percentage): 

1. Liu J., A. Khattak & L. Han. How Much Information is Lost When Sampling Driving 

Behavior Data? TRB paper # 15-0968. Presented at the Transportation Research 

Board Annual Meeting, National Academies, Washington, D.C., 2015. (100%) 

2. Wang X, A. Khattak, J. Liu, G. Masghati-Amoli & S. Son. What is the Level of 

Volatility in Instantaneous Driving Decisions? Forthcoming paper in Transportation 

Research Part C: Emerging Technologies, 2015. (50%) 

3. Liu J., A. Khattak & X. Wang. Creating Indices for How People Drive in a Region: A 

Comparative Study of Driving Performance, TRB paper # 15-0966. Presented at the 

Transportation Research Board Annual Meeting, National Academies, Washington, 

D.C., 2015. (50%) 

4. Khattak A., J. Liu & X. Wang. Supporting Instantaneous Driving Decisions through 

Vehicle Trajectory Data, TRB paper # 15-1345. Presented at the Transportation 

Research Board Annual Meeting, National Academies, Washington, D.C., 2015. 

(50%) 

5. Liu J., X. Wang & A. Khattak. Generating Real-Time Volatility 

Information, Presented at 2014 Intelligent Transportation Systems World Congress, 

Detroit, MI, 2014. (50%) 

6. Liu J. & A. Khattak. Improved Warning and Assistance Information from Connected 

Vehicle Basic Safety Messages, Accepted for presentation to 2015 Intelligent 

Transportation Systems World Congress, Bordeaux, France, 2015. (100%) 

7. Liu J. A. Khattak, & M. Zhang, Exploring Links between Naturalistic Driving 

Behaviors and Various Factors in Hierarchies: A Study Integrating Multiple Data 

Sources, To be presented at 2015 Road Safety & Simulation International 

Conference, Orlando, FL. 2015. (100%) 

8. Khattak A., & J. Liu, Transportation Data Needs for Making Transportation 

Decisions, Submitted to 2016 Transportation Research Board for review.  (20%) 
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9. Liu J., A. Khattak & M. Zhang, Structuring and Integrating Data in Metropolitan 

Regions to Explore Multi-Level Links between Driving Volatility and Correlates, 

Submitted to 2016 Transportation Research Board for review. (100%) 

10. Liu J. & A. Khattak, Delivering Improved Alerts, Warnings, and Control Assistance 

Using Basic Safety Messages Transmitted between Connected Vehicles, Submitted to 

2016 Transportation Research Board for review. (100%) 

  

This report synthesizes key papers and presentations that are relevant to this project. 
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HOW MUCH INFORMATION IS LOST WHEN SAMPLING DRIVING BEHAVIOR DATA 

COLLECTED FROM ELECTRONIC SENSORS?1 

 

Abstract – Individuals’ driving behavior data are becoming available widely through 

electronic sensors, such as Global Positioning System devices. These data can be used 

to make accurate estimates of vehicle fuel consumption, emissions, and safe driving. 

Storage and computing power have become readily available to the extent that 

scientists and engineers are presented with a wide range of options for balancing 

resource cost versus amount of data that needs to be stored. The incoming data can be 

sampled at rates ranging from one Hertz (or even lower) to hundreds of Hertz, i.e., 

one data point per second to hundreds of data points per second. Failing to capture 

substantial changes in vehicle movements over time by “undersampling” can cause 

loss of information and misinterpretations of the data, but “oversampling” can waste 

storage and processing resources. Empirical assessment of driving data is necessary 

because real-world vehicular movements are difficult to characterize mathematically 

and they vary substantially over time. A key objective of this study is to empirically 

explore how micro driving decisions to maintain speed, accelerate or decelerate, or 

change marginal rate of acceleration (known as vehicular jerk) can be best captured, 

without substantial loss of information. A framework for measuring information loss 

using several measures that are combined into an overall index is developed. Data 

from a driving simulator study collected at 20 Hertz are analyzed (N=718,481 data 

points from 35,924 seconds of driving tests). The results show that marginally more 

information is lost as data are sampled down from 20 Hz to 0.5 Hz. However, the 

relationship between loss of information and sampling rates is non-linear. The study 

provides a sound basis to help scientists easily identify data needs at the experimental 

design stage, and it has implications for designing monitoring systems. 

 

Keywords: information loss, instantaneous driving decisions, sampling rate, undersampling 

                                                 
1 Material in this section is based on: Liu J., A. Khattak & L. Han. How Much Information is Lost When 

Sampling Driving Behavior Data? TRB paper # 15-0968. Presented at the Transportation Research Board 

Annual Meeting, National Academies, Washington, D.C., 2015.  



 

 Big Data for Safety Monitoring, Assessment and Improvement  9 

 

INTRODUCTION  

Increasingly detailed driving data are being collected with well-developed data acquisition 

technologies, such as Global Positioning System (GPS), video, Bluetooth, and on-board 

diagnostics. With the increasing amount of data from sensors, digging through detailed 

transportation data helps explore micro-level driver behaviors that were not possible until 

fairly recently. Instantaneous driving decisions are of particular interest, because they are 

related to energy consumption, emissions and safety. They include accelerating, decelerating, 

maintaining speed, altering acceleration/deceleration, etc. Driving reflects a chain of 

instantaneous driving decisions made by drivers according to changes in surrounding 

circumstances, e.g., adjacent vehicles, roadway conditions, and geometric changes in the 

roadway, and weather conditions (1). The higher rate sampled data can capture more 

information about the instantaneous driving decisions. Current data collection in industry can 

go as high as 800 MHz (2) and it can contain valuable information (3). One question is that, 

whether driving data need to be sampled by such high rates in the transportation context. 

High sampling rates can be expensive in terms of requiring extra storage and processing 

time, which is called oversampling (4). Undersampling/inadequate sampling may cause loss 

of critical information (3). Next Generation Simulation Program (NGSIM) collected detailed 

vehicle trajectory data in 10 Hz to develop behavioral algorithms in support of traffic 

simulation on microscopic modeling (5). One problem for data sampled by high sampling 

rates is the data accuracy. The accuracy of NGSIM data is estimated at 2~4 ft. (6). For 

NGSIM data, in 0.1 second, the distance travelled by a 60 mph vehicle is about 8.8 ft. but 

with a 2~4 ft. error. Therefore, the accuracy of NGSIM data might be jeopardized with high 

sampling rates. Jackson et al., discussed the validity of using in-vehicle GPS second-by-

second (1 Hz) velocity data to track the 1-second driving operation modes, including 

acceleration and deceleration. Their results imply that the 1-second operation modes can be 

successfully measured by using GPS data sampled by 1 Hz (7), while the driving operation 

modes within 1-second are unknown. For example, if a driving command –“acceleration 

decelerationacceleration” occurs within one second, the 1 Hz sampled data may lose the 

information about the deceleration, though the deceleration exists in a very short time. Thus, 



 

 Big Data for Safety Monitoring, Assessment and Improvement  10 

another question is how much information we may lose if we only sampled data by 1 Hz or 

even lower rates. Current driving data are usually continuously sampled by rates from 0.2 to 

10 Hz (8-16). Note that the continuous driving data are different from the traffic data 

collected by loop detectors (17, 18). The focus of this study is the continuous driving data 

used to explore micro-driving behavior. The key question to be answered is what sampling 

rates are appropriate to capture micro-driving behavior without losing much information (i.e., 

by undersampling).  

In the field of signal processing, Nyquist–Shannon sampling theorem gives the 

appropriate sampling rates for continuous signal. The Nyquist criterion for sampling rates is 

twice the bandwidth of a bandlimited signal or a bandlimited channel. The key question is to 

find out the bandwidth of a signal (19). However, the driving behavior does not fulfill the 

features of bandlimited signal. Driving behavior varies according to the decisions a driver 

makes to respond the instantaneous driving circumstances. This study aims to find out the 

appropriate sampling rates for driving behavior data through exploring the nature of driver’s 

micro-driving behavior. 

 

DATA DESCRIPTION  

Data used in this study comes from the University of Tennessee Driving Simulator Lab 

(DSL). This driving simulator, Drive Safety DS-600c, is fully integrated and immersive to 

driving test subjects with its visual and audio effects in the front half cab of a Ford Focus 

sedan and it provides 300° horizontal field-of-view via five projectors and back sight via 

three rear mirror liquid crystal display displays (20). The cab base is able to mimic pitch and 

30 longitudinal motions. Since 2009, over 10 simulator studies have been conducted in DSL. 

The equipment has been recognized as a high-fidelity driving simulator and is qualified to be 

used to conduct driving behaviors associated research. The data of driver responses (e.g. 

speed) gathered from simulator driving tests can be used as surrogate measures of driving 

behavior (21, 22). The driving data used in this study was collected from 24 subjects (13 

males, 11 females, average licensed year – 17.6, standard deviation –7.87). Subjects were 

tested in a simulated driving scenario designed with various driving conditions, e.g., urban 

vs. rural environments. Each subject completed the driving test in 22 ~ 29 minutes, 



 

 Big Data for Safety Monitoring, Assessment and Improvement  11 

depending on their travel speed and responses to traffic controls. The driving speed was 

sampled at 20 Hz. The final dataset used in this study includes 718,481 data points from 

35,924 seconds (598 minutes) of driving tests.  

 

METHODOLOGY 

A fundamental question is how much information is lost in going to lower sampling rates? 

Driving can be volatile as drivers made driving decisions (e.g., accelerating and braking) 

according to the instantaneous changes of surrounding circumstances, e.g., adjacent vehicles, 

roadway conditions, geometric changes in the roadway, and weather conditions (1). Using 

the 20-Hz simulator driving data, this study creates a set of measures to quantify the 

magnitude of information loss (MIL): 

a) MIL1: Instantaneous driving decision loss (based on combined direct and indirect 

‘detectability’ explained below) – Equations 1, 2, 3; 

b) MIL2: Percentage of out-of-range observations during driving– Equation 4; 

c) MIL3: Ratio of sampled to actual range in driving data– Equation 5; 

d) MIL4: Relative speed deviation from linear interpolation of under-sampled data 

(based on observed speed deviation over the under-sampled data) – Equations 6 

and 7.  

An index named Extent of information loss (EIL), given a sampling rate is created and 

it is shown in Equation 8. The overall methodological framework for this study is shown in 

Figure 2 and explained in more detail below. Each measure is calculated as a percentage in 

order to index the extent of information loss in different situations. The Extent of Information 

Loss (EIL) is an overall measure of information loss that combines the above measures. The 

study quantifies the relationship between information loss measures and sampling rates. A 

user can then select thresholds, e.g., 5% or 1% of information loss may be acceptable and 

find the appropriate sampling rate.  

 



 

 Big Data for Safety Monitoring, Assessment and Improvement  12 

 

FIGURE 2 Study steps and measures 

 

Direct Detectability of Driving Decisions 

Driving decisions can be altered at any time and frequently when a vehicle is being operated. 

If the frequency of the driving decision alteration is considerably high and the data sampling 

rate is very low, then some driving decisions may be lost. As shown in Figure 3(i), the 

decision alteration– “acceleration to deceleration” between n and n+1 second is missed by 

the 1-Hz sampled data (red points), as the speeds at n and n+1 second are identical. In this 

case, undersampling causes information loss of micro driving decisions. The information 

about going from “acceleration to deceleration” between n and n+1 second is lost, while the 

information –“deceleration” or “no decision alternation” between n+1 and n+2 second is 

detected directly by the sampled data.  
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This study uses the 20-Hz simulator driving data to count the number of decisions 

made given a specific time interval, and then computes the possibility of no decision made 

cases, termed Direct Detectability of Driving Decisions. The formula is as follows: 

𝐷𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑁
∑ 𝑤𝑖

0

𝑁

𝑖=1

                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

Where, 

𝑁 = 𝑇 × 𝑓, the number of time slices during total data duration T in second; 

𝑓 = target sampling frequency/rates, e.g., 1 Hz; 

𝑤𝑖
0 = {

1, 𝑖𝑓 max{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} ×  min{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} ≥ 0,

0, 𝑖𝑓 max{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} ×  min{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} < 0,
, indicator for micro-

driving decision alternation during i
th

 time interval 𝑡 =
1

𝑓
, i= 1, 2, 3, …, N; 

𝑣𝑖𝑗 = Speed at j
th

 location in i
th

 time interval, j=1, 2, 3, …, n;  

𝑛 =
𝑇

𝑁
=

𝐹

𝑓
, number of available data points in a given time interval; 

𝐹 = sampling rate of original dataset, 20 Hz in this study. 

 

FIGURE 3 Example of information loss in instantaneous driving decisions 
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In this study, time intervals without decisions made belongs to Case 0 (this includes 

constant acceleration or deceleration), as shown in Figure 3(ii), with one micro-decision 

made are referred to as Case 1, and with two decision alternations are referred to as Case 2. 

Case 1 will be further discussed below.  

 

Indirect Detectability of Driving Decisions  

Direct detectability tells the chance of detecting micro driving decisions directly with the 

sampled data. Next, this study discusses the chance of detecting driving decisions in Case 1. 

An assumption is made before we discuss the indirect detectability. We assume that driving 

speed is a continuous changing measurement without sharp changes. A sine wave illustrates 

the example of continuous changing measures, while square wave and sawtooth wave are 

examples of sharp changes (23).  

With this assumption, using 20-Hz data, this study takes one second interval 

(corresponding to 1-Hz sampling rate) as the example for illustrating detection of driving 

decision alternation. Figure 4(i) presents four possible types of micro driving behavior of 

Case 1 within one second. Types (a) and(c) show that there is a micro-decision made from 

accelerating to decelerating between n and n+1 second. Types (b) and (d) show that there is a 

micro-decision made from decelerating to accelerating between n and n+1 second.  

For Type (a), there is a micro-decision made from accelerating to decelerating 

between n and n+1 second, while the speed measurement at n and n+1 second implies a 

deceleration during that second. Therefore, the missing micro-decision made within this 

second could be observed by using given sampling data points at n and n+1 second, though 

the amount/intensity of the driving decision change is not necessarily accurate. In the same 

fashion, Type (b) illustrates information detection for the micro-decision made from 

decelerating to accelerating. Therefore, for Types (a) and (b), the micro-decision change can 

be detected but with an error.  

Types (c) and (d) do not meet the situations in Types (a) and (b), since the sampled 

data do not show the correct micro-decision made between two sampled observations. Types 

(c) and (d) also include the cases that speed at n second is equal to n+1 second, shown in 
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Figure 4(i), since in these cases, the sampled observations can also not tell the micro-decision 

correctly.   

 Therefore, we move our sight to next second, as shown in Figure 4(ii). In Type (c1), 

the sampled speeds at n+1 and n+2 second give a deceleration which uncovers the lost 

micro-decision made between n and n+1 second, but with a temporal error. The time 

stamped for the micro-decision using sampled data is at n+1 second, but actually it occurred 

between n and n+1 second. Type (d1) is similar to Type (c1), but for detecting a micro-

decision from decelerating to accelerating.   

 

FIGURE 4 Examples of missing information when examining speed data over time 
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Types (c2) and (d2) illustrate these two types that the micro decision made between 

two sampled observations cannot be detected, since there are two micro-decisions made in 

two sequential time intervals. Besides, for cases with two or more micro-decisions made 

within one particular time interval, there is no way to detect them by above methods. This 

study mainly discusses Case1 with one micro-decision made and tries to find the possibilities 

of having Types (a), (b), (c1) and (d1) in Case 1 given a time interval. The measure, Indirect 

Detectability of Driving Decisions, is the sum of the possibilities of having Types (a), (b), 

(c1) and (d1).  

The formula is as follows: 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

∑ 𝑑𝑖
1 𝑁

𝑖=1

∑(𝑤𝑖
𝑎+𝑤𝑖

𝑏 + 𝑤𝑖
𝑐1+𝑤𝑖

𝑑1)

𝑁

𝑖=1

           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

Where, 

𝑁 = 𝑇 × 𝑓, the number of time slices during the total data duration T in second; 

𝑓 = target sampling frequency/rates, e.g, 1 Hz; 

𝑤𝑖
1 = {

1, 𝑖𝑓 ∑ 𝑧𝑗
𝑛−1
𝑗=1 = 1

0, 𝑖𝑓 ∑ 𝑧𝑗
𝑛−1
𝑗=1 ≠ 1

, indicator for whether there is only one decision change 

during i
th

 time interval 𝑡 =
1

𝑓
, i= 1, 2, 3, …, N; 

𝑧𝑗 = {
1, 𝑖𝑓 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) × (𝑣𝑖(𝑗+1) − 𝑣𝑖𝑗) < 0

0, 𝑖𝑓 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) × (𝑣𝑖(𝑗+1) − 𝑣𝑖𝑗) ≥ 0
, indicator for whether two 

consecutive driving statuses are both acceleration or deceleration; 

𝑣𝑖𝑗 = Speed at j
th

 location in i
th

 time interval, j=1, 2, 3, …, n;  

𝑛 =
𝑇

𝑁
=

𝐹

𝑓
, the number of available data points in a given time interval; 

𝐹 = sampling rate of original dataset, 20 Hz in this study. 

𝑤𝑖
𝑎 = {

1, 𝑖𝑓 𝑑𝑖
1 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) > 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) < 0 𝑎𝑛𝑑 𝑣𝑖𝑗 > 𝑣𝑖(𝑗+𝑛)

0                                                                                                                                                             
 , 

indicator for Type (a) error;  

𝑤𝑖
𝑏 = {

1, 𝑖𝑓 𝑑𝑖
1 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) < 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) > 0 𝑎𝑛𝑑 𝑣𝑖𝑗 < 𝑣𝑖(𝑗+𝑛)

0                                                                                                                                                             
 , 

indicator for Type (b) error.  
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𝑤𝑖
𝑐 =

{
1, 𝑖𝑓 𝑑𝑖

1 = 1 𝑎𝑛𝑑 𝑑𝑖+1
0 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) > 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) < 0 𝑎𝑛𝑑,                           

𝑣𝑖𝑗 < 𝑣𝑖(𝑗+𝑛)                                                                                                                                                         

0                                                                                                                                                                                          

indicator for Type (c1) error;  

𝑤𝑖
𝑑 =

{
1, 𝑖𝑓 𝑑𝑖

1 = 1 𝑎𝑛𝑑 𝑑𝑖+1
0 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) < 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) > 0 𝑎𝑛𝑑,                           

𝑣𝑖𝑗 > 𝑣𝑖(𝑗+𝑛)                                                                                                                                                        

0                                                                                                                                                                                          

 

 indicator for Type (d1) error;  

 

Instantaneous Driving Decision Loss 

With the direct and indirect detectability of driving decisions, we can detect micro-driving 

decision made given a particular sampling rate. The formula for instantaneous driving 

decision loss (MIL1) is as follows: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 1 − (𝐷𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +
1

𝑁
 ∑ 𝑑𝑖

1 

𝑁

𝑖=1

× 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑐𝑡𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) 

Empirical results are shown later. Theoretically, higher sampling rates lower the 

possibility of missing critical decisions, but they increase the possibility of “noise” in the 

data and the data storage and processing requirements. The challenge is to not lose decision 

information while reducing the noise in the data.  

 

Measures Concerning Magnitudes 

It is important to know whether sampled values represent the population and the magnitude 

of errors, if any. In other words, whether the one point (e.g., 1 Hz data) can represent the 20 

data points (20 Hz data) during the same second? If the 20 data points provide only 

marginally more information (such as constant speed during one second), one data point 

might be sufficient for sampling this second.  

Figure 5(i) shows an example using 20 Hz simulator data, along with two 1-Hz 

sampled points at the n and n+1 second. The speed is 10 mph at n second and 12 mph at n+1 

second. The problem would be whether all speed values between n and n+1 second are 
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within the micro speed range 10~12 mph. The example shows given one-second time 

interval, there are six data points, or 30% (6 out of 20) data points with speed values out of 

range 10~12 mph. In this case, two data points with records of 10 and 12 mph cannot fairly 

represent the driving behavior from n to n +1 second. The Percentage of Out-of-Range 

observation (MIL2) is a measure that captures how many data points are out of the sampled 

micro speed range.  

  

FIGURE 5 Quantifying magnitude errors in sampled data 

 

The formula for Percentage of Out-of-Range Observation (MIL2) is:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑂𝑢𝑡 𝑅𝑎𝑛𝑔𝑒 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 =
1

𝑁
∑

∑ 𝑂𝑅𝑖𝑗  𝑛
𝑗=1

𝑛
        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4)

𝑁

𝑖=1
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         Where, 

𝑂𝑅𝑖𝑗 = {
1, 𝑖𝑓 𝑣𝑖𝑗 > max { 𝑣𝑖1,𝑣𝑖𝑛} 𝑜𝑟 𝑣𝑖𝑗 < min { 𝑣𝑖1,𝑣𝑖𝑛} 

0                                                                                        
, indicator for out-of-rang 

observation. 

The ratio of sampled micro speed range over actual micro speed range during the 

same second is another measure of information loss and it is termed Ratio of sampled to 

Actual Range (MIL3). In the example, the sampled micro speed range is 12-10=2 mph, while 

the actual micro speed range is 12.3-9.6=2.7 mph. The ratio is 2/2.7=0.74, or 74%.  The 

formula is as follows:  

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑡𝑜 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑎𝑛𝑔𝑒 =
1

𝑁
∑

𝑅𝑖
𝑆𝑎𝑚𝑝𝑙𝑒𝑑

𝑅𝑖
𝐴𝑐𝑡𝑢𝑎𝑙                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5)    

𝑁

𝑖=1

 

Where, 

𝑅𝑖
𝑆𝑎𝑚𝑝𝑙𝑒𝑑

= |𝑣𝑖1 −  𝑣(𝑖+1)1|, sampled speed range for i
th

 time slice; 

𝑅𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 = max{𝑣𝑖𝑗} − min {𝑣𝑖𝑗}, actual speed range for i

th
 time slice. 

A measure of information loss is through speed deviations. The deviations are 

measured based on the linear distance between observed speeds and sampled speeds. 

Sampled data can be used to linearly interpolate the data points in between two timestamps. 

This can be compared with observed data at higher frequency (20 Hz in this case). Figure 

5(ii) uses 20 Hz driving simulator data and measures Observed Speed Deviation, which is the 

mean of absolute deviations within time intervals. Another measure is Relative Speed 

Deviation (MIL4), which is the average deviations over interpolated speed values, providing 

the extent of deviations. The formulas are as follows: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑝𝑒𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

=
1

𝑁
 ∑(

1

𝑛
∑ |𝑣𝑖𝑗 − 𝑗 ×

𝑣𝑖1 − 𝑣𝑖(𝑛+1)

𝑛
|

𝑛

𝑗=1

𝑁

𝑖=1

)                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6)     

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑝𝑒𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

=
1

𝑁
 ∑(

1

𝑛
∑

|𝑣𝑖𝑗 − 𝑗 ×
𝑣𝑖1 − 𝑣𝑖(𝑛+1)

𝑛 |

𝑣𝑖𝑗

𝑛

𝑗=1

𝑁

𝑖=1

)                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7)     
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An Index for Magnitude of Information Loss (MIL) 

The Instantaneous Driving Decision Loss, Percentage of Out-of-Range Observation, Ratio of 

Sampled to Actual Range, and Relative Speed Deviation quantify the magnitude of 

information loss from different angles. All these measures are finally calculated in terms of 

percentage of information loss. Then, these measures can be combined (weighted equally) to 

create an index capturing the Extent of Information Loss Index, given a sampling rate. The 

formula is as follows: 

     𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 𝐼𝑛𝑑𝑒𝑥

=  
𝑀𝐼𝐿1 + 𝑀𝐼𝐿2+(1 − 𝑀𝐼𝐿3) + 𝑀𝐼𝐿4

4
                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8) 

Where,  

𝑀𝐼𝐿1= Instantaneous driving decision loss; 

𝑀𝐼𝐿2= Percentage of out-of-range observations; 

𝑀𝐼𝐿3= Ratio of sampled to actual range; 

𝑀𝐼𝐿4= Relative speed deviation. 

Users of data in the transportation context can either choose a threshold for 

information loss and find the appropriate sampling rate or vice versa.  

 

RESULTS 

Direct Detectability of Driving Decisions 

To capture alternations between acceleration and deceleration within the given time interval 

(e.g., 1 second) corresponding to a sampling rate (e.g., 1 Hz), the number of alternations was 

counted by using 20 Hz data. All possible alternations within the data, given different time 

intervals and starting locations were counted. If all decisions made occur exactly at the 

sampled points, no information will be lost. For example in Figure 1, if the data was just 

sampled at n+0.5 second and n+1.5 second instead of n and n+1 second, then the driving 

decisions from accelerating to decelerating can be detected accurately, even if the data are 

still sampled at 1 Hz. The example in Figure 1 shows that there are 20 possible locations to 

start sampling the 1 Hz data.  
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Figure 6(i) presents the direct detectability, possibility of no decision made, given a 

specific time interval, and 5(ii) presents the distribution of the possibilities of the three Cases 

(discussed above) in different time intervals. In Figure 6(i), the maximum and minimum 

detectability is also indicated, according to observations from the different sampling 

locations. For short time intervals, the location does not have a significant influence on the 

data sampling. Specifically, for time interval of 1 second, the direct detectability is around 

89.90%, i.e., no micro decision made during one second intervals.  The reason is probably 

related to the driver reaction time, which is usually more than 1 second (24). Thus, there is a 

large possibility that drivers do not make decisions during one second (N= 35,924 intervals 

out of 20-Hz sampled data).   

In Figure 6(ii), the percentages of possibilities of the three Cases (i.e., no decision, 

one decision and two and more decisions made within the sample interval) are provided. 

Shorter time intervals (higher sampling rates) are related to the lower information loss in 

terms of instantaneous driving decisions, as expected.   

 

FIGURE 6 “Direct detectability” in different time intervals 
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Indirect Detectability of Driving Decisions 

Figure 7(i) shows percentages of Types (a), (b), (c1) and (d1) in Case 1 (one decision change). 

Specifically, given a one second time interval (or 1-Hz sampling rate), Types (a), (b), (c1) 

and (d1) constitute 30.99%, 25.37%, 24.42% and 16.14% of the Case 1 where only one 

micro-decision made between two sampled data points. These four types of patterns contain 

detectable driving information. The indirect detectability is the sum of these possibilities, 

shown in Figure 7(b). For one second time interval (or 1-Hz sampling rate), the indirect 

detectability is around 30.99%+25.37%+24.42%+16.14%=93.92%. With the time interval 

getting longer, this indirect detectability decreases.  

 

FIGURE 7 Indirect detectability in different time intervals 

 

Instantaneous Driving Decision Information Loss 

The combined results of instantaneous driving decision loss are shown in Table 1. There is an 

89.90% chance that there is no micro-decision (Case 0) within one second (1-Hz sampling 

data, highlighted in Table 1) and 9.20% chance that there is one micro-decision (Case 1). For 

Case 1 with only one micro-decision, there is a 30.99% chance that the Type (a) decision 

pattern would occur, and 25.37%, 24.42% and 16.14% for Types (b), (c) and (d) respectively. 
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These four types include micro-decisions that can be detected. Therefore, in summary, the 

feasibility of detecting micro-driving decisions for 1 Hz sampling data are 89.90% + 9.20% × 

(30.99% + 25.37% + 24.42% + 16.14%) = 98.54%, and 1.46% of information about micro-

decisions would be lost. Data sampled by rates higher than 0.5 Hz can reflect more than 95% 

of micro-decisions and the instantaneous driving decision loss is less than 5%. 

 

TABLE 1 Instantaneous Driving Decisions Information Loss  

Sampling 

Rate 

(Hz) 

Time 

Interval 

(second) 

Percentage of total sample Percentage of Case 1 
Feasibility 

of 

detecting 

micro-

decisions 

Instantaneous 

driving 

decision lost Case 0 Case 1 Case 2 Type a Type b Type c1 Type d1 Type c2 
Type 

d2 

10 0.1 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% ^ 

4 0.25 98.16% 1.78% 0.05% 46.53% 37.28% 7.98% 6.16% 0.88% 1.17% 99.91% 0.09% 

2 0.5 95.27% 4.49% 0.24% 34.60% 28.79% 18.96% 14.06% 1.99% 1.60% 99.60% 0.40% 

1.333 0.75 92.53% 6.95% 0.52% 31.91% 26.65% 21.04% 15.40% 2.94% 2.06% 99.13% 0.87% 

1 1 89.90% 9.20% 0.90% 30.99% 25.37% 21.42% 16.14% 3.68% 2.40% 98.54% 1.46% 

0.8 1.25 87.40% 11.22% 1.38% 30.55% 24.55% 21.29% 16.52% 4.44% 2.65% 97.83% 2.17% 

0.667 1.5 85.03% 13.03% 1.94% 30.36% 23.96% 21.00% 16.58% 5.11% 2.99% 97.01% 2.99% 

0.571 1.75 82.77% 14.68% 2.55% 30.28% 23.48% 20.64% 16.50% 5.69% 3.41% 96.11% 3.89% 

0.5 2 80.61% 16.16% 3.24% 30.16% 23.16% 20.42% 16.40% 6.12% 3.74% 95.17% 4.83% 

0.444 2.25 78.54% 17.47% 3.99% 30.09% 22.95% 20.14% 16.20% 6.57% 4.05% 94.16% 5.84% 

0.4 2.5 76.58% 18.63% 4.79% 30.14% 22.69% 19.98% 16.02% 6.81% 4.36% 93.13% 6.87% 

0.364 2.75 74.70% 19.68% 5.63% 30.22% 22.42% 19.89% 15.90% 6.96% 4.62% 92.10% 7.90% 

0.333 3 72.90% 20.59% 6.50% 30.35% 22.20% 19.76% 15.71% 7.10% 4.88% 91.03% 8.97% 

0.2 5 60.97% 25.07% 13.96% 30.98% 21.15% 18.60% 13.68% 9.02% 6.57% 82.13% 17.87% 

0.1 10 42.04% 27.13% 30.83% 30.82% 20.06% 18.36% 12.20% 10.88% 7.58% 64.14% 35.86% 

0.0667 15 30.98% 25.15% 43.88% 29.79% 21.14% 17.47% 12.01% 11.30% 7.96% 51.20% 48.80% 

Note: ^Extremely close to 0%. 

 

Measures Concerning Magnitudes 

Results in Table 2 show that lower sampling rates (or longer time intervals) are associated 

with larger percentages of out-of-range points, smaller ratio of sampled to actual range, 

larger speed deviations and relative speed deviations, as expected.  Percentage of out-of-

range points concerns the sampled micro speed range within a time interval. The sampled 

micro speed range is determined by two sequential recorded data points, as shown in Figure 

5. The results show that, on average, 1.75 points (or 8.75%) are out of the sampled micro 

speed range for 1-second time interval (or 1-Hz data), because there is a large possibility that  
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there is no micro-decision changes during one second. It is consistent with above finding that 

for the time interval of 1 second, the average possibility of no micro-decision change is 

88.90%, see Figure 6. For 1-Hz data, the ratio of sampled to actual micro range is 0.957, 

which means the extent of representativeness of the 1-Hz data to 20-Hz data is about 95.7% 

in terms of magnitude. Though some data points are possibly out of the recorded micro 

ranges, these points do not deviate broadly. Further, 1-Hz data have an observed speed 

deviation of about 0.076 mph. Note that 1% percentile of 718,481 20-Hz speed records is 

0.493 mph, thus the deviation of 0.076 mph is not substantial in the distribution of speed 

records. This is consistent with EPA drive cycle data, which is based on 10-Hz (25). Further, 

the relative speed deviation, ratio of deviation over interpolated speeds, shows that 1-Hz data 

has a relative speed deviation to 20-Hz speed records at 0.87%, substantially lower than the 

5% threshold.   

 

Extent of Information Loss 

The overall extent of information loss is an equally weighted measure, calculated using 

Equation 8. The results are shown in Table 2. We know if the sampling rate is 1-Hz, the 

percentage of out-of-range points is 8.77%, ratio of sampled to actual range is 95.71%, 

relative speed deviation is about 0.87%, and the instantaneous driving decision loss is about 

1.46%. So, the overall extent of information loss is (8.77% + (100%-95.71%) + 0.87% + 

1.46%)/4 = 3.85%. Thus, overall about 3.85% of the driving information, including the 

micro-driving decisions and speed magnitude, might be lost if the sampling rate is 1-Hz 

instead of 20 Hz.  
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TABLE 2 Overall Magnitude of Information Loss 

Sampling 

Rate (Hz) 

Time 

Interval 

(second) 

Count of out-

of-range 

observations 

MIL2 

Percentage of 

out-of-range 

observations 

MIL3 

Ratio of 

sampled to 

actual 

range 

Observed 

speed 

deviation 

(mph) 

MIL4 

Relative 

Speed 

Deviation 

MIL1 

Instantaneous 

driving decision 

loss  

(from Table 1) 

EIL 

Extent of 

information loss 

10 0.1 0.008 0.42% 100.00% 0.001 0.01% 0.00% 0.11% 

4 0.25 0.100 2.00% 99.37% 0.005 0.05% 0.09% 0.69% 

2 0.5 0.442 4.42% 98.11% 0.020 0.23% 0.40% 1.73% 

1.3333333 0.75 1.010 6.73% 96.87% 0.045 0.52% 0.87% 2.81% 

1 1 1.754 8.77% 95.71% 0.076 0.87% 1.46% 3.85% 

0.8 1.25 2.677 10.71% 94.68% 0.115 1.24% 2.17% 4.86% 

0.6666667 1.5 3.847 12.82% 93.38% 0.160 1.66% 2.99% 6.02% 

0.5714286 1.75 5.050 14.43% 92.40% 0.208 2.00% 3.89% 6.98% 

0.5 2 6.345 15.86% 91.66% 0.258 2.35% 4.83% 7.85% 

0.4444444 2.25 7.848 17.44% 90.65% 0.316 2.78% 5.84% 8.85% 

0.4 2.5 9.441 18.88% 89.53% 0.371 3.11% 6.87% 9.83% 

0.3636364 2.75 11.216 20.39% 88.63% 0.426 3.45% 7.90% 10.78% 

0.3333333 3 13.172 21.95% 87.70% 0.491 3.88% 8.97% 11.78% 

0.2 5 30.058 30.06% 81.42% 0.974 6.15% 17.87% 18.17% 

0.1 10 81.855 40.93% 71.10% 2.088 10.57% 35.86% 29.07% 

0.0666667 15 139.545 46.51% 64.73% 3.131 14.52% 48.80% 36.28% 

 

Figure 8 presents the final results quantifying various information loss measures and 

different sampling rates. The results show that different measures have different levels of 

information loss at a given sampling rate and the relationship is non-linear. As sampling rate 

drops, more information about the out-of-range observations (MIL2) is lost. This measure 

may be critical for some purposes, e.g., crash reconstruction and reporting. Therefore, for 

studies dealing with crashes, especially crash reconstruction studies that are highly sensitive 

to speed magnitude, higher sampling rates can be beneficial. The curves, including the 

overall information loss measure show that information loss becomes rather high between at 

1 to 2-Hz level.   
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FIGURE 8 Extent of information loss with different sampling rates 

 

LIMITATIONS 

The data used in this study comes from a simulator driving test, i.e., they are from a 

hypothetical but controlled test environment. Having few test subjects is recognized as a 

limitation, though it is not very germane to this study. The data was sampled by 20 Hz. It is 

possible that micro driving decisions between the 20 Hz time-stamp data points were lost. 

This study assumes the chance of having micro decision changes within 0.05 second is very 

small, given a perception reaction times of about 1 second. In the future, driving data 

sampled at even higher sampling rates can be used to verify the results of this study. The 

proposed measures can be used for analysis of information loss with any range of sampling 

frequency.  

 

CONCLUSIONS 

The key question investigated in this study is: what sampling rates are appropriate to capture 

micro or short-term driving decisions? Oversampling can result in noisy data, and waste 

storage and processing resources. Undersampling can result in loss of information about 

important instantaneous driving decisions. This study developed measures of information 

loss and quantified their relationship with sampling rates. It discussed driving behavior 

information from two angles: instantaneous driving decisions and speed magnitudes. Four 
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main measures were created to quantify the magnitudes of driving behavior information loss: 

a) MIL1 –Instantaneous driving decision loss (combined direct and indirect ‘detectability’); b) 

MIL2 – Percentage of out-of-range observations; c) MIL3 – Ratio of sampled to actual range; 

and d) MIL4 – Relative speed deviation from linear interpolation of sampled data (based on 

observed speed deviation over interpolated speed). These measures quantify the extent of 

information loss. With these four measures, the overall magnitude of information loss index 

was generated by equally weighting them. The index, termed by Extent of Information Loss 

(EIL), simply tells us how much information might be lost given a sampling rate.  

The results show that shorter time intervals (i.e., higher sampling rates) are associated 

with larger direct detectability of instantaneous driving decisions. In other words, there is a 

smaller chance of having cases with micro-driving decisions between two sampled data 

points. Drivers typically keep constant acceleration/deceleration rates during a short time. 

Specifically, for the time interval 1 second (i.e., 1-Hz sampling rate) the direct detectability is 

88.90%. The large possibility of no micro-decision in one second may be due to the driver 

reaction time. The reaction time includes the time for driver perception, identification, 

judgment and reaction (26). The whole process usually takes more than 1 second (24). This 

study further observed cases of one micro-driving decision made within a particular time 

interval and discussed the possibility of detecting such micro-driving decisions. Through 

defining the six possible micro driving decision patterns, the study found the four of six 

patterns include the micro-driving decisions that can be detected indirectly by using the 

sampled data points. These four patterns dominate the cases in short time intervals (less than 

3 seconds). Specifically, the indirect detectability for one second time interval (or 1-Hz 

sampling rate) is around 93.92%. The feasibility of detecting micro-driving decisions 

combines direct detectability and indirect detectability. Thus, the feasibility of detecting 

micro-driving decisions by 1-Hz data are 89.90% + 9.20% × 93.92% = 98.54%, and 100%-

98.54%= 1.46% of information about micro-decisions (MIL1) will be lost by 1-Hz data.  

The measures of information loss magnitude reveal that smaller sampling rates or 

longer time intervals are related to more missing data points because of their too large or too 

small values. Though there are some data points out of the micro speed ranges (about 8.77% 

of points out of the micro ranges for 1-Hz data, MIL2), these points do not deviate broadly 
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when sampling rates are equal to or higher than 1 Hz. Specifically, the ratio of sampled to 

actual ranges (MIL3) is 95.7% for 1-Hz data. And 1-Hz data has average speed deviation of 

about 0.076 mph. The small deviation supports the assumption that driving behavior within 

one second shows nearly constant acceleration (25). Further, the relative speed deviation 

(MIL4) of 1-Hz data to 20-Hz is around 0.87%. With four measures of Magnitudes of 

Information Loss (MILs), the overall Extent of Information Loss (EIL) can be calculated. For 

1-Hz sampling rate, the EIL is about 3.85%.  

This study proposed measures to quantify the magnitude of information loss. The 

measures can be used individually or combined to create an index. The results show that 

lower sampling rates are associated with greater information loss, but the relationship is not 

linear. This study contributes by quantifying the relationship between sampling rates and 

information loss and depending on the objective of their study, researchers can choose the 

appropriate sampling rate necessary to get the right amount of accuracy. For some studies, 

e.g., quantifying energy consumption or emissions, 0.5 Hz sampling rate may be sufficient, 

whereas for safety studies, higher sampling rates may be required.  
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 WHAT IS THE LEVEL OF VOLATILITY IN INSTANTANEOUS DRIVING BEHAVIORS?2 

 

Abstract - Driving styles can be broadly characterized as calm or volatile, with 

significant implications for traffic safety, energy consumption and emissions. How to 

quantify the extent of calm or volatile driving and explore its correlates is a key 

research question investigated in the study. This study contributes by leveraging a 

large-scale behavioral database to analyze short-term driving decisions and develop a 

new driver volatility index to measure the extent of variations in driving. The index 

captures variation in driving behavior constrained by the performance of the vehicle 

from a decision-making perspective. Specifically, instantaneous driving decisions 

include maintaining speed, accelerating, decelerating, maintaining acceleration and 

deceleration, or jerks to vehicle, i.e., the decision to change marginal rate of 

acceleration or deceleration. A fundamental understanding of instantaneous driving 

behavior is developed by categorizing vehicular jerk reversals (acceleration followed 

by deceleration), jerk enhancements (increasing accelerations or decelerations), and 

jerk mitigations (decreasing accelerations or decelerations). Volatility in driving 

decisions, captured by jerky movements, is quantified using data collected in Atlanta, 

GA during 2011. The database contains 51,370 trips and their associated second-by-

second speed data, totaling 36 million seconds. Rigorous statistical models explore 

correlates of volatility that include socioeconomic variables, travel context variables, 

and vehicle types. The study contributes by proposing a framework that is based on 

defining instantaneous driving decisions in a quantifiable way using big data 

generated by in-vehicle GPS devices and behavioral surveys.  

                                                 
2 The idea of driving volatility originated in another project sponsored by the US DOT under the TranLive 

University Transportation Center. That project is titled “Reducing Energy Use and Emissions through 

Innovative Technologies and Community Designs.” Driving volatility has implications for safety as well as 

energy and environment. Therefore, it was developed further in the safety context using large-scale trajectory 

data. Materials presented here are based on the following publication and presentations: 1) Wang X, A. Khattak, 

J. Liu, G. Masghati-Amoli & S. Son. What is the Level of Volatility in Instantaneous Driving Decisions? 

Forthcoming in Transportation Research Part C: Emerging Technologies, 2015. 2) Liu J., X. Wang & A. 

Khattak. Generating Real-Time Volatility Information, Presented at 2014 Intelligent Transportation Systems 

World Congress, Detroit, MI, 2014. 3) Khattak A., J. Liu & X. Wang. Supporting Instantaneous Driving 

Decisions through Vehicle Trajectory Data, TRB paper # 15-1345. Presented at the Transportation Research 

Board Annual Meeting, National Academies, Washington, D.C., 2015.  
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Keywords: instantaneous driving decision; big data; volatility; acceleration; speed  

 

INTRODUCTION 

As the most dominant transportation mode in USA, automobile driving has significant 

impacts on traffic safety, energy, and emissions. With widespread deployment of emerging 

information and communication technologies, massive amounts of driving data in high 

resolution are becoming available, allowing researchers to scrutinize driving behavior in far 

more detail than was possible before. Insights can be obtained by studying instantaneous 

decisions made during driving in nearly real-time. Also, such “Big data” provides 

opportunities that support visualization, analysis, and modeling in new ways that could not 

be imagined before. The combination of data and tools can help create new visions that can 

potentially transform the way we monitor and evaluate transportation system performance 

and potential improvement actions. This study takes advantage of the big data collected by 

in-vehicle Global Positioning System (GPS) devices and survey data to define instantaneous 

driving decisions as drivers’ choices of a set of options during driving. Such choices include 

maintaining speed, accelerating, decelerating, maintaining acceleration/deceleration, and 

vehicular jerk, i.e., the decision to change marginal rate of acceleration and deceleration. The 

sequential chaining of these short-term driving decisions can be volatile because they are 

intended to respond to the instantaneous changes in surrounding circumstances, such as 

approach of adjacent vehicles, pavement conditions, geometric transitions in the roadway, 

and weather conditions. Fluctuations in traffic flow can create challenges for safety, as well 

as challenges for energy consumption, tailpipe emissions and public health (1, 2). Existing 

studies have shown that emissions and fuel usage vary significantly with different speed 

ranges (US EPA, 3). Additionally larger deviations from mean speed can significantly 

increase crash risk (TRB, 4). Accordingly it is important to understand and quantify 

variability in drivers’ instantaneous decisions and explore the associations with 

socioeconomic, vehicular, and contextual variables.  

 Volatility in instantaneous driving decisions can be quantified by variability in 

vehicular movement, and the variability can be represented by speed and its derivative 

(acceleration/deceleration) as well as its second derivative (vehicular jerk). Micro level GPS 
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data along with behavioral survey data are used to answer the following fundamental 

questions:  

1) How to develop measures of driving volatility? 

2) What is the level of volatility in instantaneous driving decisions?  

3) What are the key correlates of driving volatility? 

 

LITERATURE REVIEW 

Aggressive driving and its impacts on traffic safety has been a concern of the public and 

many other sectors, including public transportation agencies, policy agencies, insurance 

companies, various organizations such as American Automobile Association. No consensus 

exists regarding “aggressive driving” in the literature. Social psychology researchers define it 

from the perspective of intent (5); for instance, “road rage” refers to more criminal-oriented 

offenses (6), while NHTSA classify “aggressive driving” as “driving actions that markedly 

exceed the norms of safe driving behavior and that directly affect other road users by placing 

them in unnecessary danger”(NHTSA7). Other researchers had a list of “aggressive driving” 

(8) including “weaving in and out of traffic”, “driving at speeds far in excess of the norm 

which results in frequent tailgating, frequent and abrupt lane changes”, “passing one or more 

vehicles by driving on the shoulder and then cutting in”, or through certain syndrome of 

frustration-driven behaviors or negative cognitions such as annoyance, hostility, sustained 

horn-honking, glaring at others, yelling, gesturing, etc. (6, 9-11). These studies in driving 

psychology largely depend on self-reported surveys of the driving public (5, 12), or video 

recording which requires manual identifications (13), with limitations on collecting data 

systematically and accurately. Critical research issues include: what are the so-called the 

norms of safe driving behavior; how to define a driver’s extent of “aggressive driving” in a 

precise and quantifiable way.  

 While the research of “aggressive driving” in social psychology focuses more on 

peoples’ intentions, the above driving behaviors and their cognitive processes in such driving 

situations are difficult to measure directly and continuously. Nevertheless, the speed profile 

as a common observable behavior is relatively easy to collect and has the potential of being 

utilized to characterize driving behavior. Measures used in the literature to identify 
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aggressive or calm driving styles include the ratio of the standard deviation and the average 

acceleration within a specified time window (14), ratio of standard deviation and vehicular 

jerk of the normal driving style (15).  

 Several critical cutoff points for aggressive behavior based on acceleration have been 

reported; 1.47 m/s
2
 (4.82 ft/s

2
) and 2.28 m/s

2
 (7.47 ft/s

2
) were reported as critical estimates of 

aggressive and extremely aggressive acceleration thresholds in urban driving environments 

(16, 17). However, there is no consensus threshold, for instance, other researchers reported 

0.45-0.65 m/s
2
 (1.48-2.13ft/s

2
) as calm driving, 0.85-1.10m/s

2
 (2.79-3.61ft/

2
) as aggressive 

driving for urban journeys (18).  

 The percentage of time acceleration exceeds 1.5 m/s
2
 (4.92 ft/s

2
) was reported as one 

of the most important parameters (out of 16 parameters) contributing to increases in 

emissions and fuel consumption (19). However, researchers argued that using acceleration 

alone may not represent the driving style accurately; therefore the coefficient of variance 

were also used as a complementary measurement in order to identify aggressive driving. 

Accordingly, accelerating at a relative regular rate, along with driving with medium 

acceleration but high standard deviation of acceleration are both flagged as aggressive 

driving (14). 

 Connections between aggressive driving and safety were found in existing studies (20, 

21). Paleti et al. (21)  have explored aggressive pre-crash behaviors and defined aggressive 

driving to include “speeding, tailgating, changing lanes frequently, flashing lights, 

obstructing the path of others, making obscene gestures, ignoring traffic control devices, 

accelerating rapidly from stop, and stopping suddenly.” Their results show a positive 

association between injury severity and aggressive driving (given a crash). 

 Regarding emissions and fuel consumption, studies have shown that emissions can 

vary according to the decisions including both strategic decisions (vehicle selection and 

maintenance tactical decisions (selection of routes, dealing with congestion, and operational 

decisions (idling, speed selection, and use of cruise control) (22). A large number of studies 

have linked microscopic “aggressive” driving with emissions. Research has shown that peak 

emissions are associated with aggressive driving behavior including high speeds and extreme 

speed-ups or brake-downs (18, 23-26). Factors describing speed, acceleration, power 
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demand, and gear changing behavior are significantly associated with emissions (HC, NOx, 

and CO2) as well as fuel consumption (19). An understanding of speed variation/ speed 

fluctuation/ driving dynamics, acceleration variation can further benefit research in energy 

and emissions. 

 While the literature provides insights, there is still a need to quantify the extent of 

volatile (aggressive) driving on routine urban journeys using continuous and reliable sources 

of data. This study is intended to close the gap between psychological studies and crash 

studies by applying appropriate empirical methods to quantify “volatile driving,” and analyze 

the socio-demographic and travel correlates, which distinguishes this work from other 

driving behavior studies in social psychology, human factors, and safety fields. This study is 

also quite different from previous engineering-based aggressive driving studies because 

unique real-world GPS driving data along with reported behavior data from a survey are used 

to quantify the extent of variability in driving decisions. Considering that the word 

“aggressive” contains intent of the person, the use of term “volatility” in driving decisions is 

preferred in the paper, as it better suits the purpose of measuring the variability in 

instantaneous driving decisions.  

 

DATA DESCRIPTION  

Data used in this study come from the Atlanta Regional Commission — A Regional Travel 

Survey with GPS Sub-Sample conducted in 2011 (survey period covered Feb. 2011 through 

Oct. 2011). It was a well-executed regional survey using CATI (Computer-assisted telephone 

interviewing), with 6% final response rate and 34% participate rate. The sample is large-

scale, covering about 20 counties in the region of Atlanta, representing various land use types 

and populations. Overall, the data quality was reasonable and efforts were made to make the 

sample representative of the region. More details about the survey are available in the report 

(27). Similar to a standard travel behavior survey, the instrument relies on the willingness of 

households to 1) provide demographic information about the household, its members and its 

vehicles; 2) have all household members recording all travel-related details for a specific 24-

hour period on multiple travel days, including their trip purposes, travel modes and other 

standard trip diary questions; 3) in the GPS subsample, data were collected by in-vehicle 
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GPS devices for each trip. The device captured travel date, time, latitude and longitude 

(however this information was removed from the public released database), and the speed 

data. The GPS data points were collected at a sampling rate of at least 0.25 Hz and the raw 

GPS data was fed through a processing routine that removed outlying speed values, 

interpolated missing data and smoothed the speed profile (28).  

 The final database contains different levels of data-personal data; household data, trip 

data, and microscopic second-by-second data for each trip. In all, 51,370 trips made by 1,653 

drivers from 850 households were included in the database, which contained a total of more 

than 36 million seconds of records, covering driving practices on different road types by 

different type of vehicles.  

 The data was collected professionally, using state-of-the-art methods and upon 

examination show that it is reasonable. Specifically, for driving data, the speed data has 

reasonable ranges, with highest speed of 80 mph, average speed of 37 mph; acceleration 

changes ranged between -5.2ft/s
2 

and 7.64ft/s
2
, which are consistent with the numbers 

reported in the literature, e.g., 7.47ft/s
2
 as extremely aggressive driving (29). Vehicular jerk 

changes ranged between -5.53 ft/s
3
 and 8.28 ft/s

3
. For demographics, again the data are 

reasonable. Specifically, 47.24% of drivers were male; the average age of respondents was 

47 years. This fairly represents the driving population in Atlanta. Comparing the sampled 

data with other data sources such as the census showed that 47.24% of male drivers in the 

sample is consistent with 47.4% in the Atlanta are population; average age of 47.18 years, 

this is consistent with Census (49% of population is between 25 to 54); and average vehicle 

age of 7.9 years is consistent with 33.8% of vehicles in Atlanta area that are between 6-10 

years old.  

 

METHODOLOGY 

Measures of Instantaneous Driving Decisions 

Distinct from strategic during decisions, instantaneous driving decisions refer to those micro-

decisions to accommodate real-time situational changes during their journeys. These 

instantaneous driving decisions can include: accelerating, decelerating, maintaining constant 

speed (zero acceleration), jerking the vehicle (change in marginal rate of acceleration or 
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deceleration), or maintaining constant acceleration and deceleration (zero vehicular jerk). As 

shown in Equation 9, vehicular jerk is the derivative of acceleration or the second derivative 

of speed, representing abrupt movement of vehicles. Therefore, while an acceleration profile 

shows how fast a driver speeds up and slows down, a vehicular jerk profile shows how fast a 

driver accelerates and decelerates, which is more suited to capture drivers’ abrupt 

adjustments in speeds. Figure 9 represents the speed, acceleration and vehicular jerk profile 

for a single sampled driving trip. 

J = d(a)/d(t)                                                                                                     Equation (9) 

  = d
2
(v)/d(t)

2
  

  = d
3
(d)/d(t)

3
  

Where J is vehicular jerk; a is acceleration; v is velocity; d is distance 

 

FIGURE 9 Comparison between speed, acceleration and vehicular jerk profiles on a trip 

  

 While these three profiles represent the same trip, they show significant differences, 

especially when speed fluctuates. The spikes in the vehicular jerk profile occur only when 

there are large changes in the accelerations, negatively or positively. The vehicular jerk 

profile acts as an amplification of speed changes since it is more sensitive to speed changes.  
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Patterns of Instantaneous Driving Decisions 

Different patterns of instantaneous driving decisions can be observed based on how 

acceleration and deceleration are chained sequentially. Figure 10 shows six different 

vehicular jerk patterns during driving for illustrative purposes. The upper three graphs show 

vehicular jerks starting from acceleration and followed respectively by lower acceleration (a), 

higher acceleration (b), and deceleration (c). The lower graphs show vehicular jerks starting 

from a vehicle braking and followed respectively by a lower deceleration (d), higher 

deceleration (e), and acceleration (f). In these graphs, there is a decision point at second 10 

when the driver has to decide whether he/she wants to change the current driving situation.  

 

 

Notes: j=vehicular jerk; ai=acceleration at time i; ai+1=acceleration at time i+1 
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FIGURE 10 Different types of vehicular jerk during driving. 

 

 Since vehicular jerk is the second derivative of speed, it can be positive (b, d, f) or 

negative (a, c, e). Where vehicular jerk is zero, the driver operates the vehicle at a fixed 

acceleration/deceleration rate or simply maintains the speed. However, generally there can be 

a greater chance of collisions when negative vehicular jerk happens compared with positive 

vehicular jerk. In situations where vehicles are followed by other vehicles, negative vehicular 

jerks can result in abrupt shortening of distance between the vehicles and following vehicles, 

possibly creating a shockwave under condition c, e and a (a shockwave from strong to weak). 

Understanding the profiles of different vehicular jerk styles is important for safety and for 

energy and emissions. 

 

Methodological Framework  

Figure 11 shows the overall framework. The purpose of this study is to generate knowledge 

of short-term driving decisions by taking advantage of large-scale travel survey data that 

contain 36 million second-by-second trajectory records with travel behavioral data from 

1,653 drivers. To do this, the research first defines different instantaneous driving decision 

patterns. Speed, acceleration, and vehicular jerk are extracted from the (large-scale) raw 

trajectory data, with decision patterns identified by chaining decisions with different 

sequences. Next, visualizing the data provides a complete picture of how drivers spend their 

time on these different driving decisions at different vehicular speeds. Then trip-based 

measures of short-term driving volatility are created based on acceleration and vehicular jerk 

profiles. Then, statistical models are estimated in order to explore the socio-demographic and 

travel correlates of driving volatility, generating new knowledge about volatility. Finally, 

potential applications for supporting calmer/smoother driving behavior and traffic 

management are proposed.  
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FIGURE 11 Methodological framework 

 

RESULTS – EXTENT OF VOLATILITY IN DRIVING 

Time Use Distribution 

Acceleration/Deceleration  

To understand driving time spent on different instantaneous decisions in a metropolitan 

environment, the frequency of acceleration, deceleration and zero acceleration by speed bin 

in 0.5 mph (mile per hour) increments were calculated based on 36 million driving seconds 

of total 51,370 trips (shown in Figure 12). On selection of speed bin, we have conducted 

sensitivity analysis and found that volatility can be somewhat sensitive to the selection of 

different speed bin widths. There is no ideal bin size, but we know that if the bin size is too 

large (e.g., 5 mph), then the data are overly aggregated and there is substantial loss of 

variability (note that there are only 16 bins for speeds ranging from 0 mph to 80 mph). If the 

bin size is too small (e.g., 0.1 mph), then data noise (random fluctuations) can become an 

issue, obscuring interpretation (for 0.1 mph speed bins there will be 800 bins for 0 to 80 mph 

range). The 0.5 mph (equivalent to 0.73 ft/s) speed bin is a reasonable compromise that gives 

a fairly accurate picture of the acceleration and jerk distributions with respect to driving 

speeds.  
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FIGURE 12 Time use in acceleration, deceleration and constant speed at different speeds 

(N= 36 Million) 

 

Given that each sample represents one second of driving, the magnitude of frequency bars 

demonstrate the time used during trips on acceleration, deceleration and maintaining constant 

speed of the vehicle. Notably, very small accelerations or decelerations (0.03 mph, based on 

the 5
th

 percentile of speed changes) were considered noise and coded as constant speed. 

Figure 12 (i) shows time use distribution and (ii) shows the percent of time spent on 

acceleration, deceleration and constant speed after standardization.  

 Overall 7% of driving time was spent driving at idling or low speeds (below 5 mph), 

47% of driving time was spent on acceleration, 41% of driving time was spent on 

deceleration and 5% of driving time was spent maintaining constant speed, based on the 

massive amount of field data from GPS devices. The results can be compared with the 
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Federal Test Procedure (FTP) drive cycle test (known as FTP-75 for the city driving cycle), 

which involves a decelerating drive mode for 34.5% of the time, and idling mode for 17.9% 

of the time (30, 31). Table 3 shows major drive cycles designed to represent typical driving 

practices in order to certify vehicle fuel economy. The massive field driving data provides 

first-hand knowledge of real world driving practices, which can inform drive cycle design 

and provide insights. 

 

TABLE 3 United States certification drive cycles compared with Atlanta drive cycle (30) 

Drive 

Cycle 
Description 

Data Collection 

Method 

Year of 

Data 

Top 

Speed 

Avg. 

Speed 

Max. 

Acc. 
Distance 

Time 

(min) 

Idling 

time 

FTP Urban/City 

Instrumented 

Vehicles/Specific 

route 

1969 56 mph 20 mph 
1.48 

m/s2 
17 miles 31 min 18% 

C-FTP 
city, cold 

ambient temp 

Instrumented 

Vehicles/ 

Specific route 

1969 56 mph 32 mph 
1.48 

m/s2 
18 miles 31min 18% 

HWFET 

Free-flow 

traffic on 

highway 

Specific route 

Chase-car/ 

naturalistic 

driving 

Early 

1970s 
60 mph 48 mph 

1.43 

m/s2 
16 miles 12.5 min None 

US06 

Aggressive 

driving on 

highway 

Instrumented 

Vehicles/ 

naturalistic 

driving 

1992 80 mph 48 mph 
3.78 

m/s2 
13 miles 10min 7% 

SC03 
AC on, hot 

ambient temp 

Instrumented 

Vehicles/ 

naturalistic 

driving 

1992 54 mph 35 mph 
2.28 

m/s2 
5.8 miles 9.9 min 19% 

Atlanta Urban/City 

In-veh. GPS 

devices, Travel 

survey 

2011 80mph 37mph 
5.10 

m/s2 
7.1 mile^ 12.7min^ 7%* 

Note:  

1. FTP: Federal Test Procedure. 

2. HWFET: The Highway Fuel Economy Test.  

3. US06: The US06 Supplemental Federal Test Procedure (SFTP) for High Speed and High Acceleration 

Driving behavior. 

4. SC03:  A Supplemental Federal Test Procedure (SFTP) with Air Conditioning. 

5. C- FTP: Federal Test Procedure under cold ambient temperature. 

6. ^ mean values are used for Atlanta. 

7. *  idling & low speeds (below 5 mph) 

 

 Travel time spent at different speeds varies, depending on speed range, with 30-50 

mph as the most common speed range. Less driving time was spent on driving at speeds 

higher than 50 mph. This result depends largely on regional road network structure. Overall 

http://en.wikipedia.org/wiki/Driving_cycle
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greater amounts of driving time were spent on acceleration than deceleration, especially 

when speed was between 10-50 mph. However, more time was spent on deceleration 

compared with acceleration in lower speed bins (less than 10 mph). When speed is higher 

than 50 mph the travel time spent on acceleration and deceleration was nearly equal.   

 Notably, time spent on maintaining constant speed is much less than time spent on 

speed alterations. Relatively higher proportion of time is spent on maintaining constant 

speed when speeds are higher; specifically, more than 10% in speed bins higher than 55 mph 

and more than 20% at speeds higher than 70 mph. This is reasonable since less stop-and-go 

traffic is expected on freeways with free flowing traffic, coupled with the use of cruise 

control on interstates. Notably, neither the data on the use of cruise control nor the road 

types and second-by-second geo-codes are available in the public use database. This makes it 

difficult to link the speed profile/bins with specific roadway types, especially when speed is 

less than 50 mph. For example, the roadway can be a congested interstate or signalized 

arterial with free flowing traffic. Nevertheless, the graphs reveal useful information that 

helps understand driving time use. Specifically, the driving time spent on idling (traveling 

below 5 mph) is below 10% in Atlanta; the time spent on accelerating and braking are 

roughly equal and substantially higher than time spent on maintaining speed during urban 

journeys. 

 

Vehicular Jerk  

To understand how much time drivers spent on different vehicular jerk decisions, the time 

spent for the speed bins was aggregated by different vehicular jerk types. Then the results 

were standardized by calculating the percent of time spent on each vehicular jerk style, 

shown in Figure 13. Similar to the time spent on acceleration, the percent of time spent on 

zero vehicular jerks remains a small portion, this is especially true when speed is more than 

70 mph. Possible reasons are drivers seem to avoid jerks to vehicles at higher speeds, or the 

use of cruise control is more common at higher speeds. However, the cruise control usage 

information was not available in the database, otherwise it would have added valuable 

information to understand instantaneous driving decisions comprehensively.  

 Different vehicular jerk styles are observed within different speed bins. Specifically, 
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for the speeding up behaviors (a, b), Style (a) has a very small share when speed is less than 

5 mph then reaches its peak (30%) when speed is around 30 mph, after that, it starts to shrink 

slightly but remains at least 20%. While style (b) has its largest share when speed is around 

10 mph then remains at a 20% share constantly. As for slowing down behavior (d, e), style 

(d) has its largest share (30%) when speed is 5 mph, then  remains relatively constant at 20% 

when speed increases; style (e) has its largest share when speed is close to zero, representing 

the hard braking behavior when coming to a stop. When speed increases, the percent of style 

(e) has peaks at 25% with moderate speeds (between 20 mph and 30 mph) and then remains 

constantly at 20% when speed is higher than 30 mph. As for the other two styles when 

acceleration and deceleration behavior are chained, both of style (c) and style (f) account for 

about 5% and this percentage remains relatively constant at various speeds.  
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FIGURE 13 Time use in vehicular jerk patterns at different speeds (N= 36 Million) 

 

Variation Distribution 

Acceleration/Deceleration  

Most existing studies have applied a single acceleration value as a threshold for identifying 

aggressive driving. Ahn et al. (31) have fitted a linear regression line showing that higher 

accelerations are associated with lower speeds. However, the nonlinear relationships between 

acceleration and speed in real-life driving situations are largely unexplored. Vehicle engines 

have to do more work in order to maintain the same acceleration at higher speeds to 

overcome the increasing air resistance. Therefore the ability to accelerate or decelerate a 

vehicle decreases naturally at higher speeds.  
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 The speed vs. acceleration/deceleration profile (shown in Figure 14) is consistent with 

the above expectations. Upper and lower bands represent the means plus/minus one standard 

deviation bands for accelerations and they denote “typical driving practices.” The (red) 

points that are out of the bands are the “volatile” driving seconds. In general, 15% of the 36 

million seconds of driving are volatile (15.73% for acceleration and 14.50% for 

deceleration). This is reasonable since approximately 68% of the mass will be within one 

standard deviation for a bell-shaped normal speed distribution. Note that in order to separate 

the typical behaviors of drivers from moderately and highly risky behaviors, the use of 1 

standard deviation threshold is reasonable. Using a 2 or 3 standard deviation threshold 

instead (i.e., capturing 95% and 99.7% of the observations for normally distributed data), will 

only leave extreme outliers, that are 5% or even lower (at 0.3%) portion of the data, i.e., high 

risk behaviors.  

 

  

FIGURE 14 Average acceleration/deceleration at different speeds (N=36 Million) 

 

 Bandwidth is the difference between the upper band value and the lower band value. 

A falling bandwidth reflects decreasing variation and rising bandwidth reflects increasing 

variation in speed changes. The largest bandwidth is between 10 mph and 30 mph and it 

decreases substantially when speed is higher than 40 mph. This confirms that at higher 

Bandwidth 
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speeds (typically on freeways with a good level of service) drivers usually do not or simply 

cannot accelerate and decelerate abruptly. When speed is above 55 mph, accelerations 

scarcely exceed 1.5 feet/sec2, as reflected in the upper band.  

 A similar trend is observed in the deceleration profile with minor differences. 

Compared with acceleration, the magnitude of the maximum mean of deceleration is higher. 

It is -3.0 feet/sec2 for deceleration while the maximum mean value is less than 3.0 feet/sec2 

for acceleration. This finding is interesting when combined with information contained in 

Figure 5. It revealed that in the Atlanta area, on average, drivers spend more time braking 

and they brake harder compared with accelerations.   

 

Vehicular Jerk  

Figure 15(i) shows the distribution of the average vehicular jerk by different types and Figure 

15(ii) the mean and standard deviation of vehicular jerk at different speeds. The difference in 

absolute magnitude of vehicular jerk reveals their intensity. Types (c) and (f) show the 

highest absolute magnitudes which is reasonable since both of them represent drivers 

reversing vehicle acceleration, i.e., going from acceleration to deceleration or vice versa. 

Note that type (f) has a higher absolute magnitude than its negative counterpart, i.e., type (c). 

This means that on average drivers jerk their vehicles more forcefully to accelerate after 

braking compared with the opposite. This is especially true when speed is less than 40 mph. 

The other two positive and the two negative jerk types show similar trends and values.  

 The upper band and lower band (mean plus/minus one standard deviation) are created 

respectively for the aggregated positive and negative vehicular jerk. For speed bins higher 

than 40 mph, the lower band of positive vehicular jerk is below zero and the upper band of 

negative vehicular jerk is above zero; hence zero were used in calculating the bandwidth in 

those cases. The upper band of the positive vehicular jerk and lower band of negative jerk 

collectively create a profile of regular practice for vehicular jerk. In other words, it represents 

the most typical driving practice on roadways regardless of road type. The bands can also 

serve as a critical threshold for identifying volatile driving behaviors, which are the red 

points falling outside the bands in Figure 15(ii).  
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FIGURE 15 Vehicular jerk distribution by speed bins (N=36 Million) 

 

 Based on 36 million seconds of driving data, about 13.36% seconds are identified as 

volatile seconds when using the vehicular jerk profiles. This score represents the average 

volatility level for typical driving practices for the GPS subsample from the Atlanta 

Metropolitan Area. More volatile driving practices are found within at lower speeds, as 
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expected. Specifically, 16.4% of the total time drivers are volatile (above 1 standard 

deviation) when speed is lower than 20 mph, while 13.6% of the time they are volatile when 

speed is between 20-40 mph. This percentage drops to 12.00% for speed range between 40-

60 mph and it is 11.9% for speeds larger than 60 mph. 

 The critical values of vehicular jerk associated with volatile driving behavior vary by 

speed. There is a peaking of this measure at speeds of 7.5 mph then it decreases gradually as 

vehicular speed goes up, until it reaches a steady line with minor fluctuations at speeds 

between 45-52 mph. In general, the bandwidth is larger at relatively low speeds (less than 20 

mph) and it is relatively narrower at higher speeds. This is to say that lower speeds have a 

boarder range of volatile driving, but this is not the case for higher speeds.  

 

Combined Distribution  

Figure 16 shows three dimensional distribution of time use and variations of instantaneous 

driving decisions at different speeds. The height shows the number of driving records with 

corresponding driving status (i.e., speed and acceleration/deceleration or vehicular jerk).  At 

speeds 10 ~30 mph there are fewer driving records with zero acceleration or deceleration (see 

the trough in Figure 6); for higher speeds (> 60 mph), a large portion of time is spent in 

maintaining speed with small acceleration or deceleration (see the ridge in Figure 16). 

Differing from acceleration distributions, vehicular jerk distributions are more concentrated 

at zero. This implies that any quantified jerk patterns that are different from zero can be 

easily identified as abnormal micro driving patterns, e.g., sudden braking or accelerating. 



 

 Big Data for Safety Monitoring, Assessment and Improvement  50 

 

FIGURE 16 3D distribution of time use and variations of instantaneous driving decisions at 

different speeds (N=36 Million) 

 

Driving Volatility Score  

A new measure, termed driving volatility score was created after identify the volatile 

seconds. The idea is to measure individual volatility for each trip using the acceleration or 

vehicular jerk band. A driver’s volatility score is defined as a percentage of time tagged as 

volatile seconds over the entire trip. In other words, volatility is measured as the percentage 

of time when the driver’s acceleration or vehicular jerk goes beyond the typical driving 
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thresholds (acceleration or vehicular jerk bands). The driving volatility score can be 

calculated by following equation:  

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 % =  
𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑆𝑒𝑐𝑜𝑛𝑑𝑠  

 𝐸𝑛𝑡𝑖𝑟𝑒 𝑇𝑟𝑖𝑝 𝐷𝑟𝑢𝑎𝑡𝑖𝑜𝑛
× 100 Equation (10) 

 

 Figure 17 shows a comparison between the volatility scores generated using 

acceleration bands versus using vehicular jerk bands for a sampled trip. Less volatile seconds 

were identified using jerk bands compared with using acceleration bands; volatility score was 

8.5% with jerk bands vs. 6.0% with acceleration bands for the trips analyzed. The jerk-based 

volatile seconds are not always in concordance with volatile acceleration-based volatile 

seconds. That is to say, sometimes the driver accelerated at a higher than the upper band level 

but he/she did not jerk the vehicle during this period.  

 

 

FIGURE 17 Volatile driving identified by different methods 

 Conceptually, it is important to understand and identify key decision points when the 

driver abruptly changes driving actions, e.g., goes from acceleration to deceleration. Based 

on the observations shown in Figure 17, jerk seems to capture critical decision points better 
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than acceleration while acceleration has more tolerance for volatility. Vehicular jerk can 

serve as an effective measurement to identify abrupt instantaneous decision changes. Since 

the volatility score is calculated for each trip, when data on multiple trips for a single driver 

are collected, average volatility score can be generated for each driver. This makes it is 

possible to compare both the intra-trip volatility and volatility between different drivers. 

 

RESULTS – CORRELATES OF DRIVING VOLATILITY 

After calculating the volatility scores (based on vehicular jerk bands) for each trip in the 

database, statistical models were estimated to investigate relationships between the volatility 

and driver demographics, vehicle characteristics and trip specifics. The database contained 

51,370 trips made by 1,653 survey respondents in. After removing observations with missing 

information, the final database sample contained 40,240 trips by 1,486 respondents-—these 

are unique driver-vehicle pairs, labeled as driver-vehicle ID. Table 4 presents the descriptive 

statistics for the dependent and independent variables. The average volatility score is 13.84, 

which means that driving was volatile during 13.84% of the travel time (above or below 

mean vehicular jerk plus or minus one standard deviation). Some trips show calm driving 

(minimum score is 0.1%) while some were highly volatile when 55.46% of the time was 

spent on jerking vehicles at a higher level (outside of the bands). 

 In the final sample for modeling, 47.24% drivers were male; the mean age of 

respondent is 47.18, and a broad age range from 15 to 91. The mean vehicle age is 7.91 years 

and 43.88% of sampled vehicles were auto-sedans, 27.52% SUVs, and 13.59% pick-up 

trucks. As expected, 96.16% vehicles were gasoline-powered. 46.26% of trips were made 

during rush hours (6:00 am-10:00 am or 3:00 pm-7:00 pm); 24.37% were made on 

weekends; 19.49% were commute trips; the average trip duration was 14.17 minutes with an 

almost equal standard deviation–14.73. Overall, the data seems to be reasonable and in 

accordance with expectations. 
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TABLE 4 Descriptive statistics for dependent and independent variables 

Variables N Frequency Mean/Percent Std. Dev Min Max 

Dependent Volatility Score 40240 - 13.840 6.701 0.1 55.46 

Independent 

Driver 

Variable 

Gender [Male] 1486 702 47.24% 0.499 0 1 

Driver age (years) 1486 - 47.183 13.319 15 91 

Vehicle 

Age 
Vehicle age (years) 1486 - 7.908 5.417 0 50 

Vehicle 

Type 

Auto-sedan 1486 652 43.88% 0.496 0 1 

Two-seated 1486 58 3.90% 0.194 0 1 

Van 1486 131 8.82% 0.284 0 1 

RV 1486 3 0.20% 0.045 0 1 

SUV 1486 409 27.52% 0.447 0 1 

Station wagon 1486 31 2.09% 0.143 0 1 

Pickup 1486 202 13.59% 0.343 0 1 

Vehicle 

Fuel Type 

Gasoline 1486 1429 96.16% 0.192 0 1 

Diesel 1486 29 1.95% 0.138 0 1 

Hybrid 1486 19 1.28% 0.112 0 1 

Flex fuel 1486 9 0.61% 0.078 0 1 

Trip 

Variable 

Rush hour [Yes] 40240 18616 46.26% 0.499 0 1 

Weekend [Yes] 40240 9805 24.37% 0.429 0 1 

Trip duration (min) 40240 - 14.165 14.738 2.01 374.45 

Commute trip [Yes] 40240 7843 19.49% 0.396 0 1 

Note: * Rush hours are AM (6:00 am-10:00 am) or PM (3:00 pm-7:00 pm) 

 

 The differences of volatility scores between trips can be result of the driving styles of 

different drivers (males vs. females, or young vs. older drivers), vehicle performance (new 

vehicles vs. older vehicles, body type, fuel type), or trip specifics (longer vs. shorter trips, 

commute vs. non-commute trips, and workday vs. weekend trips). Therefore simple 

Ordinary Least Squares (OLS) models were first estimated to test their associations. 

However, the traditional OLS models assume independence of observations and in this case 

multiple trips were made by the same drivers. Therefore, OLS will violate the independence 

assumption. One way to deal with correlated observations is to estimate a mixed-effect 

model, also called the mixed model. This model can capture correlated errors that arise from 

repeated observations in a group. In this study, the group variable is driver-vehicle pair; 

repeated variables are personal and vehicular characteristics; non-repeated variables are the 

measures for each specific trip. A “Driver-Vehicle ID” was created to represent different 
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driver-vehicle pairs in the sample and was used as the random term in the mixed-effects 

model. The random term quantifies the error due to repeated variables. The mixed-effects 

regression model can contain both fixed and random terms, as shown in following equations. 

 

𝑌 = 𝛽𝑋 + 𝛾𝑍 + 𝜀                                                                                                  Equation (11) 

𝛾~𝑁(0, 𝐺) 

𝜀~𝑁(0, 𝜎2𝐼𝑛) 

 

 Y is the response vector of volatility score for each trip in the data; X is a vector of 

fixed independent variables (age, gender, vehicle body type, fuel type, vehicle age, trip 

duration, commute or not, peak hour or off-peak, weekend or not); β is a vector of estimated 

fixed effects for matrix X; and Z is a vector of random independent variables (Driver-Vehicle 

ID); γ is a vector of estimated random effects for matrix Z; ε is a vector of unknown random 

errors; G is an diagonal matrix with identical entries for each fixed effect; In is an identity 

matrix; γ and ε are assumed to be independent.  

 Table 5 provides the modeling results for mixed models. Given that the distribution of 

vehicle jerk-based volatility scores is slightly right-skewed, square root transformed volatility 

score was tested as the dependent variable. However, the transformation improved the 

statistical properties of the model only marginally, e.g., significance of variables. Therefore, 

the original volatility score is used as the dependent variable, providing more intuitive 

parameter interpretation. Overall, the modeling results are reasonable, providing insights 

about a range of volatility correlates. 

 A key advantage of the mixed model over OLS model is that the random terms added 

into the mixed model structure can better model the effects of repeated observations within 

the group (driver-vehicle pair) by allowing various degrees of freedom for different variables 

according to their variations within groups. More specifically, all observations are treated 

equally in the OLS model regardless of their variations within or between groups. In this 

case, the overall sample size is 40,240 (the total number of trips). However, in the mixed 

model, only the sample size for generic variables (32), (i.e., trip characteristics) with 

variations within groups remains the same (40,240), while the sample size for alternative-
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specific socioeconomic variables (i.e., driver and vehicle characteristics) become 1,486, 

which is the count of unique driver-vehicle pairs. As a result, larger standard errors are 

reported for alternative-specific socioeconomic variables in the mixed model. The estimated 

coefficients in the OLS and mixed models are nearly identical, but with different standard 

errors for driver and vehicle related terms, as expected. The following modeling 

interpretation is based on the mixed-effects model using the untransformed volatility score.  

 Full and final models are presented, with the final model containing only the 

statistically significant variables (10% level). The results of the final are discussed. The 

models have a reasonably good fit, explaining 40.3% of the variation in volatility score. As 

expected, younger drivers exhibit higher volatility in driving (5% level). A ten year increase 

in driver age is associated with a decrease of 0.57 in volatility scores. However, there is no 

statistical evidence for association between volatility score and drivers’ gender. Driving 

volatility varies significantly with vehicle characteristics, including vehicle body type, 

vehicle age and fuel type. The results show that two-seat sports cars are associated with 

higher volatility, possibly due to their higher horse power. Trips made by two-seat sports cars 

drivers have 3.28 higher volatility scores, compared with trips made by drivers in the “base” 

category that includes sedans, RVs, station wagons, and SUVs. While van drivers show 1.82 

lower volatility compared with drivers in the base category, perhaps due to their larger size 

and more sluggish performance. The use of hybrid vehicles shows lower volatility (-1.98) 

compared with gasoline and diesel vehicles. The volatility scores are lower for older 

vehicles, perhaps due to their engine performance. A year added to vehicle age is associated 

with a 0.10 units decline in the volatility score.  

 Volatility score also shows significant correlation with trip specific factors, including 

trip duration, time of day, day of the week, and trip purpose. Compared with non-rush hour 

trips, there is a 0.24 units increase in volatility score during rush hours; compared with 

workday trips, the decrease in volatility score for weekend trips is 0.30 units; for commute 

trips, the increase in volatility score is 0.36 units compared with non-commute trips; and a 

one-minute increase in trip duration is associated with a 0.04 units lower volatility score.  
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TABLE 5 Results of the mixed model using volatility score as the dependent variable 

Dependent = Volatility Score Full model Final model 

Independent Variables   β   P-value β   P-value 

Constant   16.6983 **   <.0001 17.6644 **   <.0001 

Driver Variables 
Gender [Male] -0.0018     0.9871 -   - 

Driver age (years) -0.0573 **   <.0001 -0.0574 **   <.0001 

Vehicle Age Variable Vehicle age (years) -0.1079 **   <.0001 -0.1036 **   <.0001 

Vehicle Body Type 

Variable 

Auto-sedan  Base 
 

  
 

Base      
 

Two-seated 3.8554 ** 
 

<.0001 3.2830 ** 
 

<.0001 

Van -1.2621 ** 
 

0.0084 -1.8231 ** 
 

<.0001 

Recreational Vehicle-RV -2.7353   
 

0.1886 Base    - 

Sports Utility Veh.-SUV 0.3291   
 

0.4249 Base    - 

Station wagon -0.2914   
 

0.6843 Base    - 

Pickup -0.8836  *   0.0522 -1.5596 **   <.0001 

Vehicle Fuel Type 

Variable 

Gasoline  Base 
 

  
 

Base      
 

Diesel -0.9484 
  

0.1760 Base    - 

Hybrid -1.7512 ** 
 

0.0295 -1.9825 ** 
 

0.0101 

Flex fuel 1.8594 *   0.0742 1.5765 *   0.0947 

Trip Variables 

Rush hours [Yes] 0.2375 **   <.0001 0.2376 ** 
 

<.0001 

Weekend [Yes] -0.3038 ** 
 

<.0001 -0.3036 ** 
 

<.0001 

Trip duration (min) -0.0356 ** 
 

<.0001 -0.0356 ** 
 

<.0001 

Commute trip [Yes] 0.3627 **   <.0001 0.3630 **   <.0001 

R2 0.4028 0.4028 

R2 Adjusted 0.4026 0.4027 

Root Mean Square Error-RMSE 5.2672 5.2672 

Mean of Response 13.8397 13.8397 

Observations (or Sum Weights) 40240 40240 

Bayesian Information Criterion-BIC 251937 251900 

Variance Component Estimates 

  Var. Comp. 
Percent  

of Total 

Var. 

 Comp. 

Percent 

of Total 

Variance Between Driver-Vehicle Pairs 14.7136 34.66% 14.8319 34.84% 

Remaining Variance 27.7429 65.34% 27.7430 65.16% 

Total Variance 42.4564 100.00% 42.5749 100.00% 

Note:  

1. Rush hours: AM (6:00 am-10:00 am), PM (3:00 pm-7:00 pm);                                                                

2. ** = significant at a 95% confidence level;  

3. * = significant at a 90% confidence level; 

4. For mixed model, the random term is Driver-Vehicle ID (N=1486); 

5. REML=Restricted Maximum Likelihood; 

6. Statistically significant variables (90% level) are kept in the final model. 

 

 High levels of correlations among explanatory variables were checked and we did not 
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find them to be high. One example is that of commute trips which are typically made during 

peak hours. In the data, 46.28% of the trips were made during rush hours and 19.51% of the 

trips were for commute purposes. While these two variables capture different aspects of 

travel, i.e., time of day and trip purpose, the correlation between them was relatively low 

(0.156), justifying their joint inclusion in the model. 

 Examination of the random effects, reported as variance component estimates, shows 

a sizable variation (34.84%) in the volatility score across driver-vehicle pairs. This further 

justifies the use of the mixed model. Note that the models presented in this paper show an 

effort to test whether the measurement of volatility can be used to quantify the relationships 

between instantaneous driving decisions and other variables that include personal, vehicular, 

situational context factors. The random effects model confirmed that volatility score varies 

significantly between different driver-vehicle pairs. However, it does not fully disentangle 

volatility variations between different driving trips made by the same driver. A more 

sophisticated hierarchical modeling framework will be needed for answering such questions 

(33). 

 

LIMITATIONS 

This study depends heavily on GPS data collected by in-vehicle devices. To some extent the 

accuracy and availability of location data constrain the analysis. Compared with high 

industrial sampling rates (e.g. 96 kHz), these data are limited by relatively low sampling 

frequency which gives only second-by-second speeds. A reasonable question is whether 

second-by-second speed data are good enough for identifying instantaneous driving 

decisions. To address this issue, additional analyses were conducted by collecting driving 

data at 20 Hz using a driving simulator (34). This database includes 35,924 seconds speed 

data made by 24 drivers, generating 718,481 speed data points, which allows the 

investigation of micro-driving decision changes within one second. The results show that 

drivers made no change to their speed for 89.9% of the sampled seconds, i.e., drivers either 

kept accelerating, decelerating or just maintained speed during a second. Only 10.1% of the 

sampled seconds involve driver’s decision change. Overall, the analysis found that at least 

98.5% instantaneous driving decision changes can be detected using second-by-second data 
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compared with smaller intervals and that the second-by-second data are reasonably accurate 

for the purposes of this study.  

 Some other critical information remains unknown to the researchers due to privacy 

concerns. This includes the type of roads and the geo-codes for each second of driving. 

Missing geographically referenced information for trips prevents the researchers from 

extracting useful contextual factors. These include roadway segments used during trips and 

associated traffic counts, road geometry, traffic operations facilities, and surrounding land 

uses. Therefore, how the instantaneous decisions are associated with surrounding traffic, 

facility and land use can be analyzed adding interesting findings. This paper presents an 

attempt to enhance understanding of volatility in instantaneous driving decisions. More 

research is needed to investigate the impacts of network attributes, environmental attributes 

on instantaneous decisions, as shown in the conceptual framework. Expansion of the study 

can form the basis of future analysis of driver volatility and how it relates to energy, 

environment and safety. 

 

CONCLUSIONS 

In the context of using big data for traffic safety improvement, tailpipe emissions and energy 

use reduction in a driving dominant environment, it is essential to understand drivers’ 

instantaneous driving decisions and their associated impacts. The research takes advantage of 

large-scale driving databases coupled by second-by-second GPS data to develop a framework 

for the research agenda in driving behavior studies addressing how to define the 

instantaneous driving decisions in a quantifiable way and how to quantify explicitly volatile 

driving in a defensible manner. The answer is to create a volatility indicator to measure the 

gap between an individual’s driving practice and the typical driving practice in that region. 

Assuming the typical driving practice applied by most people represents the norm of driving 

culture in that region, the driving practices standing out of that norm could be defined as 

volatile driving. The paper demonstrates a methodology to measure the volatility, which is 

based on variance in vehicular jerk between individual drivers and regional sample profiles. 

The creation of a robust volatility score that is able to quantify the extent of volatility, instead 

of simply labeling a driver as aggressive or non-aggressive is a key contribution. 
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 To create a typical driving profile for the study metropolitan area, acceleration or 

vehicular jerk distributions were analyzed using speed bins and enveloped by an upper and 

lower band (mean plus/minus one standard deviation). While typical driving practices are 

identified when the acceleration or vehicular jerk fall between the bands, volatile driving is 

defined as accelerations or vehicular jerks that fall out of the bands range. A volatility score 

for each trip or each driver can be calculated by the percent of travel time spent on volatile 

driving. In this sense, developing a regional driving profile is critical since this driving 

profile serves as a “standard” to define individual’s driving volatility. Atlanta’s driving 

profile was developed through an innovative visualization of data, the time spent on each 

driving behavior was calculated. Specifically, overall 14% of the travel time spent on high 

vehicular jerk; 7% of driving time was spent on idling or traveling at speeds below 5 mph, 

47% of driving time was spent on acceleration, 41% of driving time was spent on 

deceleration and 5% of driving time was spent on maintaining constant speed. This 

information can be useful for designing driving cycle in a local context for better emissions 

estimations. The methodology has great potential to be expanded to measure driving 

volatility on road infrastructures as an indicator of roadway safety. Roads with higher risk 

(those experiencing more hard braking and negative jerks) can be identified and proactive 

strategies can be designed. 

 Individual level driving volatility also has a practical value. It can be potentially 

incorporated in advanced traveler information systems applications, e.g., driving behavior 

monitoring and feedback devices can use volatility information to provide alerts and 

warnings, network-based microscopic simulations and emission models can use volatility 

information for more accurate predictions (35-37). Drivers can check their volatility scores at 

the end of each day or even instantaneously, knowing where and when they exhibited high 

volatility. Moreover, statistical models confirmed that volatility scores significantly vary 

between drivers, which can support the early identification of risk-prone drivers. Volatile 

practices of risk-prone drivers can be potentially targeted through early warning systems. 

Applications can be embedded in navigation systems to send drivers warnings when they 

repeatedly show highly volatile driving during a trip.  
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STRUCTURING AND INTEGRATING DATA IN METROPOLITAN REGIONS TO EXPLORE MULTI-

LEVEL LINKS BETWEEN DRIVING VOLATILITY AND CORRELATES3 

 

Abstract – This study demonstrates how large-scale data can be transformed into 

useful knowledge. This is done by creating a framework for combing data from 

multiple sources and comparing counties/regions in terms of volatility of resident 

drivers. Higher driving volatility (e.g., hard accelerations or braking) can imply 

unsafe outcomes, more energy use, and higher emissions. A unique database was 

integrated from four sources that include two large-scale travel surveys, historical 

traffic counts from California and Georgia Department of Transportation, socio-

demographic information from Census, and geographic information from Google 

Earth. The database provides a rich resource to test hypothesis and model driving 

decisions at the micro-level, i.e., second-by-second. The large-scale travel survey data 

includes 117,022 trips made by 4,560 drivers residing in 78 counties of major 

metropolitan areas (Los Angeles, San Francisco, Sacramento, and Atlanta) across two 

states, representing various land use types and populations; all trips were recorded by 

in-vehicle GPS devices giving 90,759,197 second-by-second speed records. The 

study contributes by demonstrating a way to integrate data from multiple sources to 

explore links between naturalistic driving behaviors and various factors structured in 

hierarchies. That is, the data are structured at the levels of trips, drivers, counties, and 

regions. Appropriate hierarchical models are estimated to study correlates of driving 

performance and compare driving performance across regions. 

 

Keywords: Data integration, naturalistic driving behavior, multi-level modeling 

 

 

                                                 
3 Material based on: Liu, J., A. Khattak & M. Zhang, Exploring Links between Naturalistic Driving Behaviors 

and Various Factors in Hierarchies: A Study Integrating Multiple Data Sources, Accepted for presentation at 

2015 Road Safety & Simulation International Conference, Orlando, FL, 2015. A revised version of this paper, 

titled “Structuring and Integrating Data in Metropolitan Regions to Explore Multi-Level Links between Driving 

Volatility and Correlates,” was submitted to 2016 Transportation Research Board for review. This chapter also 

contains content from a paper: “Liu J., A. Khattak & X. Wang. Creating Indices for How People Drive in a 

Region: A Comparative Study of Driving Performance, TRB paper # 15-0966. Presented at the Transportation 

Research Board Annual Meeting, National Academies, Washington, D.C., 2015.”  
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INTRODUCTION  

Utilizing transportation-related data to perform driving-related studies is one compelling 

direction to uncover and ameliorate transportation-related problems, e.g., safety, energy 

consumption and emissions. With newly available information technologies, transportation 

data can be pulled from conventional and emerging data sources. Conventional data sources 

normally refer to those documenting roadway parameters, roadside elements, land use, 

safety facts and relevant transportation plans. Emerging data are typically generated by 

electronic sensors, such as Global Positioning Systems (GPS), video, Bluetooth, social 

media and weather reporting system (RWIS). 

Understanding driving performance is key to implementation of transportation 

improvement strategies, and big data can help in this regard (1). Driving behaviors have 

been quantified in terms of driving volatility using large-scale naturalistic driving data (2). 

Driving volatility captures the instantaneous decisions about speed, acceleration, and 

vehicular jerk. It is expected that higher driving volatility (e.g., hard accelerations or 

braking) are associated with worst safety outcomes, higher energy consumption and 

emissions. With increasing amounts of information, generated by sensors from various 

sources that include travelers, vehicles, infrastructure and the environment coupled with 

social, economic and spatial data, the relationships between driving volatility and associated 

factors can be explored in a more comprehensive way.  

A number of factors have been linked in the literature to explore associations of 

driving behaviors with various factors, such as law enforcement (3, 4), road network, road 

type and traffic conditions (5-8), terrain (9, 10), weather (11-14), driver education (15-17), 

vehicle type (2, 18), and driver demographics (19-24). Driving behavior is complex and it 

can be conceptualized as embedded in a hierarchical structure (25). Drivers in the same area 

face similar road network, terrain, and are influenced by the similar driving cultures (26, 27). 

However, drivers also have their own characteristics, such as gender, age, education, 

income, employment, etc. Further, while drivers are making different trips, their driving 

behaviors are influenced instantaneously by the trip features, such as time of day, trip length, 

trip purpose, etc. The increasing availability of a large number of factors structured in 

hierarchies increases the importance of applying appropriate statistical models.  This study 
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explores how large-scale data can be structured and integrated in metropolitan regions to 

explore multi-level (trips, drivers, counties, and regions) links between driving volatility and 

its correlates.  

 

 

DATA SOURCES 

The data used in this study are extracted from four major sources: 1) Naturalistic driving 

data from regional travel surveys; 2) Geographic information about road networks from 

Google Earth; 3) Contextual data from Census; 4) Exposure data from the historical traffic 

data reported by the State Department of Transportation,  

 

Naturalistic Driving Data 

The naturalistic driving data used in the study were collected through regional travel surveys, 

including 2012-2013 California Household Travel Survey (CHTS) and 2011 Atlanta 

Regional Travel Survey (ARTS) (28, 29). The data is managed by Transportation Secure 

Data Center under the National Renewable Energy Laboratory (30). The data from CHTS 

cover 58 counties across the State of California and the data from ARTS cover 20 counties in 

the region of Atlanta Regional Commission. The data include 117,022 trips made by 4,560 

drivers residing in 78 counties across two states, representing various land use types and 

populations; all trips were recorded by in-vehicle GPS devices giving 90,759,197 second-by-

second speed records (31).  

 

Geographic Information 

Driving behaviors are highly correlated to the geographic features of road networks (7, 8). 

This study extracts the geographic information of road networks within a county and 

explores the county-level correlations between the road geographic and regular driving 

practices in a county. Data were pulled from the Google Earth 

(https://www.google.com/earth/). Geographic information explored in the study includes 

road network pattern (gridiron or non-gridiron), terrain (flat, rolling or hilly), elevation, coast 

(yes or no) and big city (yes or no).  

https://www.google.com/earth/
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Contextual Data 

To account for the influence of contextual factors on driving behaviors, this study pulled 

county-level data from Census.com. The key factors that are considered in the investigation 

include population, population density, percent of residents 65 years or over, percent of 

female, percent of persons with a Bachelor’s degree or higher, mean commute time, median 

household income and percent of persons in poverty. All these factors are hypothetically 

correlated to the driving behaviors in a county.  

 

Exposure Data 

The exposure data were pulled from the historical traffic data reported by the State 

Department of Transportation. Highway Performance Monitoring System (HPMS) under 

California Department of Transportation provides yearly traffic records for each county and 

city (32) and TravelSmart of Georgia Department of Transportation documents county-level 

traffic records as well (33). The exposure data used in the study include rural and urban road 

mileage within a county, and rural and urban daily vehicle miles traveled at the county-level. 

The ratio of numbers distinguishing the rural and urban areas can be useful in understanding 

the driving performances associated with the urbanized level of a county.  

 

MODELING STRUCTURE 

A key objective of this study is to explore the links between naturalistic driving behaviors 

and various factors structured in hierarchies. There are numerous measurements that have 

been utilized to characterize driving behaviors, including speed (34, 35), acceleration (36-

38), acceleration noise/variations (39, 40), and vehicular jerk (41). Vehicular jerk is the 

derivative of acceleration (or the second derivative of speed), and is able to capture the 

instantaneous change of driving decisions (e.g., transitions from accelerating to decelerating). 

The authors’ previous papers (2, 42) have developed a measure, termed driving volatility, to 

capture the instantaneous decisions about speed, acceleration, and vehicular jerk 

simultaneously. The driving volatility is defined as the percentage of “extreme” driving 

seconds (i.e., large vehicular jerk values) over the duration of an observation period (e.g., one 
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trip, or all trips made by one driver). Large values imply extreme variability of instantaneous 

driving decisions. The measure of driving volatility is proposed for qualifying driving 

behaviors relying on the large-scale trajectory data. More details about the driving volatility 

are available from our previous papers. Driving volatility is used as a key measure of the 

driving behaviors for the modeling.  

 The dataset structured using the data pulled from aforementioned sources contains a 

hierarchy, as shown in Figure 18. In the survey one driver could make multiple trips. Trips 

made by the same driver are not completely independent form each other, though trip-related 

factors (e.g., length, time and trip purpose) may vary across trips. Since factors driver’s own 

attributes would not change within in the same driver making multiple trips, the assumption 

of independence of observations in traditional ordinary least square (OLS) models is 

violated. Trips are nested in drivers. The same nesting relationships can also be found 

between drivers and counties, and counties and regions. Note that, to see whether there is a 

significant differences in driving behaviors between major regions, this study partitioned the 

data into six regions: four metropolitan areas, delineated according to 2013 Census 

Metropolitan Statistical Areas (43), including Los Angeles Metropolitan Area (Los Angeles-

Long Beach-Riverside), San Francisco Metropolitan Area (San Jose-San Francisco-Oakland) 

and Sacramento Metropolitan Area (Sacramento-Arden-Arcade-Yuba City) and the Atlanta 

metropolitan area, and California central valley area (Fresno-Stockton), and other areas that 

are not included in any specified regions.  

 

 
 

FIGURE 18 Hierarchical data structure 
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 One method to statistically account for hierarchical structure of the data is to use 

multi-level or hierarchical modeling. Multi-level modeling can accommodate non-

independence of observations. Given the four levels embedded in the data, a four-level model 

is applied in the study. The formulations of the four-level hierarchical modeling are shown in 

simplified forms as following.  

 The level-1 (trip level) model is a regression model with dependent variable Y 

(driving volatility) and trip-related factors. 

 

 𝑌 = 𝛽(1)𝑋(1)           Equation (11) 

 

Where, 

𝑌 = a vector of responses—trip-level driving volatility;  

𝑋(1)= a vector of level-1 factors (including the intercept term), e.g., trip length and 

trip purpose; 

𝛽(1)= a vector of coefficients for level-1 factors, including the intercept; 

 The level-1 models treat trips made by the same driver as a whole observational set 

and generate one coefficient for each level-1 factor for this driver. These coefficients can be 

regarded as being fixed within one driver and used to predict response (e.g., driving 

volatility) given a set of trip specifics only for the same driver. For all drivers, there are 

thousands of coefficients for each level-1 factor. Thus, coefficients generated in level-1 

models are random to thousands of drivers. The mean and variance of these random 

coefficients can be predicted by level-2 (driver level) predictors (e.g., driver age, gender, 

vehicle body type and fuel type), level-1 models discover the variance of driving 

performance within a driver, and level-2 models are used to explain the variance across 

drivers.  

 The level-2 (driver level) includes a series of regression models using coefficients 

𝛽(1) from level-1 models as the dependent variable. Note that, 𝛽 includes the intercept term. 

If only the intercepts from level-1 models are allowed to vary across the drivers, level-2 

models are termed as random intercept models. The formulations shown below also allow the 
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coefficients from level-1 models vary across drivers, which is referred to as random intercept 

and slope model.  

  

 𝛽(1) = 𝛽(2)𝑋(2)                                                                               Equation (12) 

Where, 

𝛽(1) = a vector of coefficients from level-1 models;  

𝑋(2) = a vector of level-2 factors, e.g., driver age, gender, vehicle body type and fuel 

type; 

𝛽(2) = a vector of coefficients for level-2 factors. 

 Level-2 models explain the mean and variance of random coefficients of level-1 

factors. Similarly, they treat all level-1 coefficients in one county as a whole observational 

set and generate one coefficient for each level-2 factor for the county. Through explaining 

coefficients for level-2 predictors, level-3 (county level) models can be estimated to uncover 

the variance across counties. Level-3 includes a series of regression models using level-2 

coefficients, 𝛽(2) as the responses.  

 

 𝛽(2) = 𝛽(3)𝑋(3)                                                                                          Equation (13) 

 

Where, 

𝛽(2) = a vector of coefficients from level-2 models;  

𝑋(3) = a vector of level-3 factors, e.g., terrain, road network pattern, population; 

𝛽(3) = a vector of coefficients for level-3 factors. 

 And so on, the level-4 model is estimated to examine the variations of level-3 

coefficients within each county.  

 

 𝛽(3) = 𝛽(4)𝑋(4)                                                                                          Equation (14) 

 

Where, 

𝛽(3) = a vector of coefficients from level-3 models;  

𝑋(4) = the level-4 factor, i.e., regional dummy variables; 
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𝛽(4) = a vector of coefficients for level-4 factors. 

 Thus, only factor(s) at the highest level have stationary coefficients, and factors in 

three lower levels have coefficients varying across their nested groups. To report the 

variations in coefficients of factors at the three levels, hierarchical modeling estimation 

provides two components of coefficients for these factors: fixed effects and random effects. 

Fixed effects can be viewed as the general correlations between factors and responses. 

Random effects reflect the variations of the coefficients. Fixed effects are typically of 

primary interest and give a sense of how the factors are associated with the response variable. 

Random effects are estimated to accommodate variations across groups (i.e., drivers, 

counties, and regions). Finally, the four-level hierarchical modeling structure can be written 

in a simple way:  

 

 𝑌 = 𝛽𝑋 + 𝛾(2)𝑍(2) + 𝛾(3)𝑍(3) + 𝛾(4)𝑍(4)                                            Equation (15) 

 

Where, 

𝑌 = a vector of responses, e.g., trip-level driving volatilities;  

𝑋 = a vector of all factors; 

𝛽 = a vector of the fixed components of coefficients for all factors; 

𝑍(2) = a vector of the group factors at level-2, e.g., driver age, gender and vehicle 

body type; 

𝛾(2) = a vector of random-effects at level-2;  

𝑍(3) = a vector of the group factors at level-3, e.g., terrain and road network pattern; 

𝛾(3) = a vector of random-effects at level-3;  

𝑍(3) = a vector of the group factor at level-4, e.g., region dummy variable; 

𝛾(3) = a vector of random-effects at level-4;  

 The output of hierarchical modeling generally has three components: the effect 

estimation of fixed-effects parameters, variance estimation of random-effects parameters and 

model goodness of fit.  

 

RESULTS 
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Regional Driving Performance Comparisons  

Time Use Distributions 

Figure 19 presents the time spent in the four regions on acceleration, deceleration and 

constant speed by speed range in 0.5 mph increments, as well as standardized time shares, 

i.e., time shares for speed bins. Time spent accelerating or braking varies with speeds.  

 

FIGURE 19 Time use distribution of acceleration, deceleration and constant speed in study 

regions 

 

The findings regarding regional comparisons are: 

• Regions in California show similarity in terms of larger time shares in high 

speeds ranges (60 ~70mph), which is different from Atlanta. This likely 

depends on a host of different factors that include road networks and trip 

lengths. Trips in regions of California are relatively longer (average-14 

minutes) in the sampled datasets than those in Atlanta (average- 12 minutes). 

Longer urban trips are typically associated with a greater possibility of driving 
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on interstates or expressways. Highway and arterial density of a region might 

be another reason for regional differences. Compared with California regions, 

Atlanta has the least density of highways and arterials (44, 45).  

• For normal local driving practices (10~50 mph), there is no clear peak time in 

Los Angeles. Traffic congestion is a likely contributing reason. According to 

the 2012 Urban Mobility Plan (46), Los Angeles region is ranked highest in 

terms of congestion index among these four regions.  

• Atlanta has a clear peaking of time spent at around 40 mph, and this region 

has the smallest congestion index (46).  

• Driving in San Francisco Bay Area seems shows more time spent in lower 

speed ranges, partly because of the hilly terrain and strong grades in the 

region.  

 Note that, very small acceleration or deceleration rates (0.04 ft/s
2
, based on the 5

th
 

percentile of speed changes in one second) were considered noise and coded as constant 

speed. Standardized time shares show that driving time is mostly devoted to accelerating or 

decelerating rather than maintaining speed. Acceleration and deceleration have about equal 

time share. Increasing time is spent on maintaining constant speed when speeds are higher 

(>60 mph). Notably, Sacramento region has a large time share percentage of constant speed 

at speeds around 76 mph. The large shares of constant speed possibly associate with traffic 

congestion on freeways, and to some extent the use of cruise control. Unfortunately, the 

information about the use of cruise control was not recorded or released to the public in the 

database. Comparisons between regions reveal that Atlanta shows lower times spent on 

driving at freeway speeds of 70 mph or above.  

 

Acceleration and Vehicular Jerk Distributions 

The distributions of micro driving patterns reveal the magnitude/intensity of micro driving 

decisions (accelerating, decelerating, changing acceleration/deceleration). Figure 20 shows 

the distribution of quantified acceleration/deceleration and vehicular jerk patterns along with 

the speeds. Owing to the large number of observations (N= 78.7 million records), the four 

regions have similar distributions. The overlapping distributions are presented but with the 
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means and two-standard-deviations separately indicated for each region in the Figure. The 

gradual change of color shows the concentration extent of magnitude to zero (i.e. constant 

speed or zero acceleration/jerk). The mean and two-standard-deviations are for each speed 

range (0.5 mph increments) is plotted. Major findings are: 

• San Francisco Bay Area has smaller magnitudes of accelerations (closer to 

zero) than other areas. This may be associated with the hilly terrain and strong 

grades in the region.  

• Los Angeles and Sacramento regions have closer means and standard 

deviations across speed bins. Both regions have grid road patterns with similar 

terrains and road densities, so similar driving performance in terms of 

acceleration is expected and observed.  

• Atlanta region seems to have larger means and standard deviations.  

• In general, large accelerations and decelerations occur at lower speeds (10 ~ 

30 mph) and after speeds reach higher ranges (> 40 mph) the magnitude tends 

to zero, as shown in Figure 20(i).  

• Acceleration/deceleration rates are not distributed homogeneously along with 

the speeds.  

• There are no apparent regional differences at speeds less than 15 mph or 

above 60 mph, in terms of mean and standard deviation shown in Figure 

20(ii).  
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FIGURE 20 Distributions of acceleration and jerk at various speeds 

 Six types of vehicular jerk patterns show different distributions. Owing to the limited 

space, only Types (c) and (f) are presented in this paper, as shown in Figure 20 (iii) and (iv). 

Types (c) and (f) may represent the most volatile micro-driving patterns with acceleration 

chained with deceleration in a very short time frame. Unlike the acceleration distribution, 

vehicular jerk does not have a symmetric distribution. The positive jerk patterns have larger 

magnitudes than negative ones. The large magnitudes of jerk are mainly observed at speeds 

of 5~20 mph. After speeds reach 30 mph, the vehicular jerk magnitudes are relatively 

constant around zero. 

 Type (f) has positive values and SF has smaller magnitudes than other three regions at 

speeds 15~30 mph. The small magnitudes are associated with smooth or careful driving. The 

hilly terrain in SF may encourage drivers to change their micro-driving decisions (i.e. Type 

(f), from decelerating to accelerating) more smoothly. LA and SAC have close magnitudes in 

Type (f) and ATL has the largest magnitudes. There are no significant differences between 

regions in terms of the Type (c) driving pattern. SF and SAC have close magnitudes that are 

smaller than regions LA and ATL. Overall, this study observed and quantified heterogeneity 

of micro driving patterns at different speeds.  
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Combined Distribution of Time Use and Accelerations/Vehicular Jerk 

Due to space limitations, only the overall distributions of speeds, accelerations and time use 

can be presented (N=78.7 million records). Figure 21 shows a wealth of information about 

vehicle performance; distributions for each region are available from the authors. The height 

shows the number of driving records with corresponding driving status (i.e., speed and 

acceleration/deceleration or vehicular jerk).   

 At speeds 10 ~30 mph there are fewer driving records with zero acceleration or 

deceleration (see the trough in Figure 21); for higher speeds (> 60 mph), a large portion of 

time is spent in maintaining speed with small acceleration or deceleration (see the ridge in 

Figure 21). Differing from acceleration distributions, vehicular jerk distributions are more 

concentrated at zero. This implies that any quantified jerk patterns that are different from 

zero can be easily identified as abnormal micro driving patterns, e.g., sudden braking or 

accelerating. 

 

 

FIGURE 21 Combined distributions of speed, acceleration (or vehicular jerk), and time use 
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Regional Driving Index 

To generate a new measure of driving performance at the regional level, similar to 

Congestion Index in the Urban Mobility Report (30), this study created the following two 

indices: 

 

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = ∑(
𝑣𝑖 ∗ 𝑡𝑖

∑ (𝑣𝑖 ∗ 𝑡𝑖)𝑛
𝑖=1

𝑛

𝑖=1

∗ |𝑎𝑖|)      Equation (16) 

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑉𝑒ℎ𝑖𝑐𝑢𝑙𝑎𝑟 𝐽𝑒𝑟𝑘 𝐼𝑛𝑑𝑒𝑥 = ∑(
𝑣𝑖 ∗ 𝑡𝑖

∑ (𝑣𝑖 ∗ 𝑡𝑖)𝑛
𝑖=1

𝑛

𝑖=1

∗ |𝑗𝑖|)      Equation (17) 

 

Where,  

𝑣𝑖= speed record of sampled vehicle during 𝑖𝑡ℎtime slice in selected region, i=1, 2, 

3, …, n, n is the total driving records for one region (e.g., for LA: 24,185,380 

seconds);  

𝑡𝑖 = duration of 𝑖𝑡ℎtime slice, i.e., one second if using the second-by-second data; 

𝑎𝑖= acceleration during 𝑖𝑡ℎtime slice; 

𝑗𝑖= vehicular jerk during 𝑖𝑡ℎtime slice; 

∑ (𝑣𝑖 ∗ 𝑡𝑖)𝑛
𝑖=1  = total distance traveled in the sample in one region. 

 These two indices represent the intensity and variability of instantaneous driving 

decisions respectively. They can be used to compare the driving patterns across metropolitan 

areas. If Time is sliced equally, the formals can be simplified to speed-weighted mean. Using 

the data, LA has 24,185,380 time slices (n=24,185,380); SF has n=12,579,345; SAC has 

n=5,229,874 and ATL has n=36,715,308 slices. Each time slice consists of one second and 

the speed and acceleration for each second is known. The results are shown below: 

 

TABLE 6 Regional Driving Index 

Region Acceleration 

Index 

Vehicular Jerk 

Index 
LA: 0.951 0.268 

SF: 0.826 0.250 

SAC: 0.847 0.241 

ATL: 0.909 0.254 
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 Hypothetically, the acceleration index can range from 0 up to 15 or even 20 ft/s
2
, and 

similarly for vehicular jerk index. Acceleration index captures the intensity of micro-driving 

decisions and jerk index captures the variability in micro-driving decisions in a region (using 

a sample). The results show that overall LA has the largest values for both indices and ATL 

is ranked second. SAC has a larger acceleration index than SF but the vehicular jerk index is 

smaller.  

  

Comparisons of County-level Characteristics 

Table 7 summarizes the basic information for five selected counties, pulled from multiple 

sources for illustrative purposes. Particularly, the travel patterns and driving behaviors are 

extracted using naturalistic driving data from millions of driving records. Comparisons of 

selected counties (related to large cities) are made in terms of travel patterns and driving 

behaviors quantified using large-scale trajectory data. T-tests were done with the county of 

Los Angeles. Key results from the comparisons are:  

• On average, drivers in Fulton County (Atlanta) reported making more daily trips than 

four California counties, i.e., the county of Los Angeles, San Francisco, Sacramento 

and San Diego. The difference is statistically significant (p<0.05). No significant 

differences were observed among four California states. 

• The daily distances travelled for drivers in San Francisco were longer than Los 

Angeles drivers, as well as the lengths and durations of trips.  

• Drivers in San Francisco spent significantly longer times traveling daily than those in 

Los Angeles, as well as Fulton drivers. Sacramento and San Diego drivers spent less 

time traveling daily than Los Angeles drivers.   

• In terms of the trip length and duration, drivers in Fulton County made significantly 

shorter trips than Los Angeles drivers. While slightly longer trips were made by San 

Diego drivers, their trip durations were shorter than Los Angeles drivers’.  

• Drivers in Los Angeles spent significantly more time on idling and less time on 

extended stable driving, than other four counties.  

• Drivers in Fulton spent more time on accelerating and less time on decelerating than 

those in Los Angeles than other four counties. 
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• In terms of the trip mean speed, drivers in San Diego and Fulton had a higher mean 

speed than drivers in other counties.  

• In terms of the mean acceleration/deceleration, drivers in Los Angeles made greater 

accelerations/decelerations than drivers in other counties.  

• Drivers in Los Angeles show greater vehicular jerk values (including positive and 

negative values) than those in other counties. 

• Compared with trips made in Los Angeles, trips made by drivers in San Francisco 

were associated with a higher level of driving volatilities (in terms of the mean 

driving volatility), and trips made in other three counties were less volatile.  

  

 Differences in the travel patterns and driving performances can be easily drawn by 

the simple comparisons shown in Table 7. The basic information about these counties can be 

used to explain why these differences exist. For example, perhaps because of the hilly terrain 

and strong grades in the county of San Francisco, drivers there had a higher level of driving 

volatilities than those in other four counties where the terrain is flat or rolling. However, the 

relationships between driving contexts and driving performance quantified by various 

measurements are very complex. Simple comparisons can only reveal a simple picture about 

the driving contexts and driving performance. Driver behaviors are potentially influenced by 

multiple factors synergistically. Thus, this study establishes a sophisticated hierarchical 

model to untangle those complex relationships between driving performance and driving 

contexts. As introduced, driving volatility is a measure being able to capture the speed, 

acceleration and vehicular jerk simultaneously. Driving volatility is used as a key measure of 

the driving practices for the further exploration.  
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TABLE 7 Comparisons of Selected Counties 
Data 

sources 
Attributes 

Los 

Angeles 

San 

Francisco 
Sacramento San Diego 

Fulton 

(Atlanta) 

Sample 

size 

Number of drivers in dataset 528 39   146   184   258   

Total trips in dataset 12329 989   3074   4355   8226   

Naturalistic 

driving 

data 

Mean daily trips 4.47 4.50   4.27 * 4.39   5.95 ** 

Total VMT (mile) 97242.12 9273.40   25125.90 
 
36034.22   48919.07   

Mean daily VMT (mile) 35.28 42.15 ** 34.95 * 36.36 * 35.40   

Mean trip length (mile) 7.89 9.38 ** 8.17 
 

8.27   6.08 ** 

Total duration (min) 170365.30 15963.42   41462.88 
 
57666.77   96491.60   

Mean daily duration (min) 61.82 72.56 ** 57.67 ** 58.19 ** 69.82 ** 

Mean trip duration (min) 13.82 16.14 ** 13.49 
 

13.24 ** 12.00 ** 

% of short trips (<3 miles) 45.23% 50.25%   40.11% 
 

41.38%   50.52%   

% of long trips (> 25 miles) 6.70% 12.44%   5.69% 
 

5.21%   3.11%   

Mean % time on idling per trip 11.14% 9.68% ** 10.15% ** 9.73% ** 9.80% ** 
Mean % time on ext. stable driving per trip# 4.59% 6.69% ** 5.01% ** 5.31% ** 4.63%   

Mean % time on acceleration per trip 44.25% 43.22% ** 44.46% * 44.57% ** 45.11% ** 

Mean % time on declaration per trip 39.04% 39.62% ** 39.49% ** 39.54% ** 39.53% ** 

Trip mean speed (mph) 26.884 29.181 ** 27.859 ** 28.595 ** 28.358 ** 

Mean maximum speed (mph) 49.727 51.078 ** 50.742 ** 51.832 ** 49.924   

Trip mean acceleration (ft/s2) 1.028 0.929 ** 0.973 ** 0.988 ** 0.977 ** 

Mean maximum acceleration (ft/s2) 4.064 4.138 ** 4.005 ** 4.111 ** 4.016 ** 

Trip mean deceleration (ft/s2) -1.112 -0.977 ** -1.053 ** -1.069 ** -1.068 ** 

Mean maximum deceleration (ft/s2) -4.722 -4.642 ** -4.652 ** -4.825 ** -4.713   

Trip mean positive vehicular Jerk  (ft/s3) 0.377 0.337 ** 0.358 ** 0.364 ** 0.321 ** 

Mean maximum positive vehicular Jerk 

(ft/s3) 

3.171 3.028 ** 3.097 ** 3.188   1.806 ** 

Trip mean negative vehicular Jerk (ft/s3) -0.293 -0.268 ** -0.278 ** -0.286 ** -0.288 ** 

Mean maximum negative vehicular Jerk 

(ft/s3) 

-1.403 -1.385   -1.362 ** -1.419 ** -1.382 ** 

Mean driving volatility (%) 15.79 18.10 ** 14.36 ** 14.85 **  15.08 ** 

Maximum driving volatility (%) 64.68 60.20   55.25   55.22   56.25   

Contextual 

data 

Population 10017068 837442   1462131   3211252   984293   

Population density (per square mile) 2419.60 17179.10   1470.80 
 

735.80   1748.00   

Percent of persons 65 years and over 11.90 14.20   12.40 
 

12.30   10.10   

Percent of females 50.70 49.10   51.10 
 

49.70   51.30   

Percent of persons with college degrees 29.50 52.00   27.90 
 

34.40   48.40   

Mean commute time for work (minutes) 29.10 29.90   25.70 
 

24.20   26.90   

Median household income (dollars) 27900.00 47278.00   26856.00 
 
30683.00   37238.00   

Percent of persons in poverty 17.10 13.20   16.50 
 

13.90   16.80   

Land size (square miles) 4057.88 46.87   964.64   4206.63   526.64   

Geographic 

information 

Road pattern (Gridiron/Non-Gridiron) Gridiron Non-G.   Gridiron   Gridiron   Non-

Grid. 

  

Road network density (m. per square 

miles) 

5.35 20.53   5.35 
 

2.67   7.96   

General terrain (Flat/Rolling/Hilly) Flat Hilly   Flat 
 

Flat   Rolling   

Coast area (Yes/No) Yes Yes   No   Yes   No   

Exposure 

data 

Maintained highway miles, Rural 2074.09 0.72   871.21   4048.89   198.85   

Maintained highway miles, Urban 19620.00 961.71   4285.30 
 

7164.90   3990.98   

Maintained highway miles, Total 21694.09 962.43   5156.51 
 
11213.79   4189.83   

Daily VMT, Rural (1000 miles) ^ 7709.93 17.56   3305.59 
 

8051.40   394.00   

Daily VMT, Urban (1000 miles) 206772.51 9082.22   29631.74 
 
67600.61   31443.00   

Daily VMT, Total (1000 miles) 214482.44 9099.78   32937.33   75652.01   31837.00   

Safety facts Annual average fatal crashes (2008-2012) 643.55 36.91   117.91   242.91   92.73   
Notes: 1. #: Extended stable driving was defined by speed is above 30 mph and acceleration less than 0.088 (ft/s2).  

Thresholds were calibrated using test driving data; 2. Variables in Italics show results of t-tests, for comparisons with county 

of Los Angeles; 3. ** = t-test significant at a 95%confidence level; * = t-test significant at a 90% confidence level. 4. ^: 

VMT = Vehicle Miles Traveled, calculated by multiplying the AADT × the Section Length. 
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Descriptive Statistics 

The raw dataset includes 117,022 trips made by 4,560 drivers residing in 78 counties across 

two states. Observations with missing information (e.g., no driver age or gender) were 

removed from the final data set. The final dataset contains 90, 511 trips made by 3,842 

drivers from 78 counties. Counties were partitioned into six regions: Los Angeles (LA), San 

Francisco (SF), Sacramento (SAC), Atlanta (ATL), California central valley (CCV), and 

other areas in California. These regions were delineated according to 2013 Census 

Metropolitan Statistical Areas (43). Table 8 presents the distributions of observations at each 

hierarchy. Specifically, for level-1, the trip level, all observations are independent to each 

other and there are no clusters/groups. For level-2, the driver level, there are 3,842 groups (or 

drivers); on average each driver made 23.6 trips (min - 1, max - 154) during their travel 

survey periods. For level-3, the county level, one average, there are 953 trips (or 

observations) made within each county (min - 3, max - 9,615). For level-4, the regional level, 

the distributions of observations is shown in Table 9. 22,706 trips are from LA and were 

made by 1,027 drivers; 10,708 trips were made by 499 drivers in SF, 5,103 trips were made 

by 255 drivers in SAC, 5,658 trips were made by 245 drivers from CCV, 40,322 trips were 

made by 1,493 drivers in ATL, and 6,044 trips were made by 323 drivers from other areas in 

California.  

TABLE 8 Observation Distributions at Each Level 

Level No. of Groups 
Trips per Group 

Minimum Average Maximum 

Level 1 90,551 trips 1 - 1 

Level 2 3,842 drivers 1 23.6 154 

Level 3 78 counties 3 953 9,615 

Level 4 6 regions 5103 15091.8 40332 

 

TABLE 9 Distributions of Observations in Each Region (Level 4) 

Region (not county) Trips in Region Percentage Drivers in Region Percentage 

LA 22,706 25.08%   1,027 
 

26.73% 

SF 10,708 11.83%   499 
 

12.99% 

SAC 5,103 5.64%   255 
 

6.64% 

CCV 5,658 6.25%   245 
 

6.38% 

Other CA 6,044 6.67%   323 
 

8.41% 

ATL 40,332 44.54%   1,493 
 

38.86% 

Total 90,511 100.00%   3,842   100.00% 
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 Table 10 presents the descriptive statistics of key variables. The number of 

observations at each level is different, which is unlike ordinary models that all variables have 

the same number of counts. The numbers shown in the table seem reasonable and were error 

checked. The driving volatility is the dependent variable and it was measured at the trip-

level, which has 90,511 observations. 

 The average trip distance was 8.53 miles (min – 0.1, max - 431.52). 46.29% trips 

were made during rush hours, 23.56% were made during weekends and 17.76% were 

commute trips (from home to work or school). At Level 2, there are 3,842 observations (or 

drivers). 48.23% of them were males. Driver ages ranged from 15 to 91 years old. The mean 

vehicle age was 7.38 years old, ranging from 0 (i.e., new car) to 52 years old. In the dataset, 

43.02% vehicles were regular auto-sedans, 22.46% were SUVs and 13.25% were Pickups. 

These vehicles consumed a variety of types of fuels—the majority is gasoline vehicles. At 

Level 3, descriptive statistics of 78 counties are summarized by contextual information, 

geographic information and exposure data. Among these counties, 49 generally have non-

gridiron road networks, 46 are collectively flat areas and 16 counties are next to the coast. 

The mean road network density is 2.926 miles per square miles (min – 0.199, max – 20.534). 

Mean daily vehicle miles traveled is 13410.51 miles (min – 167, max – 214482).  
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TABLE 10 Descriptive Statistics of Key Variables 

Variables N Frequency 
Mean 

/Percent 

Std.  

Dev. 
Min Max 

Dependent Driving Volatility (%) 90,551   13.934 7.314 0 67.188 

Level-1  

Trip distance (Mile) 90,551 
 

8.529 14.319 0.1 431.52 

*Rush hour  [Yes] 90,551 41,920 46.29% 0.499 0 1 

Weekend  [Yes] 90,551 21,332 23.56% 0.424 0 1 

Commute trip [Yes] 90,551 16,083 17.76% 0.382 0 1 

Level-2 

Gender [Male] 3,842 1,853 48.23% 0.5 0 1 

Driver age (years) 3,842 
 

48.257 13.406 15 91 

Vehicle age (years) 3,842 
 

7.384 5.024 0 52 

Body  

Type 

Auto-sedan  3,842 1,653 43.02% 0.495 0 1 

Two seated  3,842 197 5.13% 0.221 0 1 

Van  3,842 265 6.90% 0.253 0 1 

Hatchback 3,842 3 0.08% 0.028 0 1 

SUV  3,842 863 22.46% 0.417 0 1 

Station wagon  3,842 124 3.23% 0.177 0 1 

Pickup  3,842 509 13.25% 0.339 0 1 

Convertible 3,842 33 0.86% 0.092 0 1 

Unknown body type 3,842 195 5.08% 0.22 0 1 

Fuel  

Type 

Hybrid electric vehicles 3,842 326 8.49% 0.279 0 1 

Gasoline vehicles 3,842 3,242 84.38% 0.363 0 1 

Diesel vehicles 3,842 115 2.99% 0.17 0 1 

Plug-in hybrid electric vehicle 3,842 19 0.49% 0.07 0 1 

CNG (compressed natural gas) 3,842 23 0.60% 0.077 0 1 

BEV (battery electric) vehicle 3,842 86 2.24% 0.148 0 1 

Flex fuel vehicle 3,842 9 0.23% 0.048 0 1 

Unknown fuel type 3,842 22 0.57% 0.075 0 1 

 Level-3  

Contextual 

data 

Percent of persons 65 years and over 78 
 

14.36 4.461 7.8 25.1 
Percent of females 78 

 
49.924 2.13 36.6 52.6 

Percent of college degrees 78 
 

25.632 10.492 12.4 54.6 

Mean commute time (minutes) 78 
 

26.044 5.142 13.9 37.4 

Median household income (dollars) 78 
 

26917.79 7203.295 16667 55695 

Percent of persons in poverty 78 
 

15.297 4.68 6.7 24.8 

Geographic 

information 

Road pattern [Non-Gridiron] 78 49 62.82% 0.486 0 1 

Road density (m. per square mile) 78 
 

2.926 3.561 0.199 20.534 

General terrain [Flat] 78 46 58.97% 0.495 0 1 

General terrain [Rolling] 78 19 24.36% 0.432 0 1 

General terrain [Hilly] 78 13 16.67% 0.375 0 1 

Coast area [Yes] 78 16 20.51% 0.406 0 1 

Exposure 

data  

Maintained highway miles 78 
 

2737.615 3129.114 270 21694 

Percent of urban maintained miles 78 
 

44.265 32.897 0 100 

Daily VMT (1000 miles) 78 
 

13410.51 28021.57 167 214482 

Percent of urban daily miles traveled 78   56.091 33.178 0 100 

Level-4# 
Region 

Indicator 

LA 6 - - - 0 1 

SF 6 - - - 0 1 

SAC 6 - - - 0 1 

CCV 6 - - - 0 1 

Other CA areas 6 - - - 0 1 

ATL 6 - - - 0 1 
Note: 

*: Rush hours are AM (6:30 am-10:00 am) or PM (3:30 pm-7:00 pm); 
#: Level-4 predictors are regional indicators that are indicator variables (0 or 1).  
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Model Selection  

Table 4 presents all plausible variables (even more variables, e.g., population and density) 

that can be examined in the hierarchical modeling. However, not all variables are ensured to 

have a significant correlation with the response variable. Thus, the model selection is 

performed before the giving the final model. Standard information criteria, i.e., Akaike 

information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC), are used to 

compare models with different sets of variables. Given the same data, a smaller value of AIC 

and BIC indicates a better goodness-of-fit (47-49).  

 For any statistic models, the AIC and BIC can be calculated by  

 

𝐴𝐼𝐶 = −2Ln𝐿 + 2𝑘 Equation (18) 

𝐵𝐼𝐶 = −2Ln𝐿 + 𝑘Ln𝑁 Equation (19)  

  

 Where, 

 Ln𝐿 = maximum log-likelihood of a model; 

 𝑘 = the number of variables in a model; 

 𝑁 = the sample size.  

 In the Equation 19, the second part (𝑘Ln𝑁) implies that BIC would favor a simpler 

model (i.e., smaller number of variables included in the model) if the number of observations 

(k) is large. Thus, given such a large dataset (N=90,511 at trip-level), this study takes AIC as 

the major information criterion when AIC and BIG disagrees on which model is the best, in 

terms of the goodness-of-fit. Considering the massive computation of multi-level model with 

a large number of observation as well as the fact that most variables show significant 

correlations with driving volatility, the backward elimination method is applied for the 

variable selection (50). Table 11 shows the model selection results.  
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TABLE 11 Model Selection 

Y = Driving Volatility Model #1 Model #2 Model #3 Model #4 

Level-1 

Trip Distance (Mile) √ √ √ √ 

Rush Hour  [Yes] √ √ √ √ 

Weekend  [Yes] √ √ √ √ 

Commute Trip [Yes] √ √ √ √ 

Level-2 

Gender [Male] √ × × × 

Driver Age (years) √ √ √ √ 

Vehicle Age (years) √ √ √ √ 

Body Type 

Auto-Sedan  Base Base Base Base 

Two Seated  √ √ √ √ 

Van  √ √ √ √ 

Hatchback √ √ √ √ 

SUV  √ √ √ √ 

Station Wagon  √ √ √ √ 

Pickup  √ √ √ √ 

Convertible √ √ √ √ 

Unknown body type √ √ √ √ 

Fuel Type 

Hybrid electric Vehicles √ √ √ √ 

Gasoline vehicles Base Base Base Base 

Diesel vehicles √ √ √ √ 

Plug-in hybrid electric vehicle √ √ √ √ 

CNG (Compressed Natural Gas) √ √ √ √ 

BEV (Battery Electric) vehicle √ √ √ √ 

Flex fuel vehicle √ √ √ √ 

Unknown fuel type √ √ √ √ 

Level-3 

Contextual 

data 

Percent of persons 65 years and over √ √ √ × 

Percent of females √ √ √ √ 

Percent of persons with college 

degrees 

√ √ × × 

Mean commute time for work 

(minutes) 

√ √ × × 

Median household income (dollars) √ √ √ √ 

Percent of persons in poverty √ √ × × 

Geographic 

information 

Road pattern [Non-Gridiron] √ √ √ √ 

Road network density (miles per 

square miles) 

√ × × × 

General terrain [Flat] Base Base × × 

General terrain [Rolling] √ √ × × 

General terrain [Hilly] √ √ × × 

Coast area [Yes] √ √ √ × 

Exposure 

Data 

Maintained highway miles, Total √ × × × 

Percent of urban maintained highway 

miles 

√ √ √ √ 

Percent of urban daily vehicle miles  

traveled 

√ × × × 

Level-4 
Region 

Indicator 

LA √ √ √ √ 
SF √ √ √ √ 

SAC √ √ √ √ 

CCV √ √ √ √ 

Other CA areas Base Base Base Base 

ATL √ √ √ √ 

Log Likelihood (Model) -287186.1 -287186.4 -287188.1 -287190.0 
Degree of Freedom 47 43 38 36 

AIC 574466.3 574458.8 574452.2 574452.0 

BIC 574908.7 574863.6 574809.9 574790.9 
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 Model 1 is the full model with all plausible variables. Most variables are significantly 

correlated with the response variable – driving volatility. Variables that are not significant at 

50% level (i.e., p-value > 0.5) are removed from Model 1. These variables include driver 

gender, road network density, maintained highway miles and percent of urban daily vehicle 

miles traveled. In general, a three-point reduce in AIC indicates a significant improvement of 

the model’s goodness-of-fit (51). The significantly reduced AIC and BIC indicate Model 2 

has a better goodness-of-fit than Model 1. From Model 2, variables that are not significant at 

70% level (i.e., p-value > 0.3) are removed. These variables include percent of persons with 

college degrees, percent of persons in poverty, and terrain. Model #3 has significantly 

smaller AIC and BIC estimates than Model 2, indicating a significant improvement of 

goodness-of-fit. From Model 3, variables that are not significant at 90% level (i.e., p-value > 

0.1) are removed to get Model 4. However, Model 4 does not show a significantly reduced 

AIC estimate, which implies that variables eliminated from Model 3 should be kept for a 

better goodness-of-fit. Thus, the final model used for modeling the correlates of driving 

volatility with associate factors embedded in a hierarchy.  

 

Modeling Results 

Tables 12 and 13 present the outputs of the full model and the final mode after model 

selection: fixed effects, random effects and summary statistics. The model summary statistics 

seem reasonable. Note that, the likelihood ratio test of hierarchical modeling versus OLS 

modeling shows that the multi-level hierarchical model is significantly better than an OLS 

model, in terms of explaining the variances of driving volatility embedded in hierarchies. The 

signs of coefficients of variables (i.e., fixed effects) are expected. The random effects in 

Table 13 show that the total variances of driving volatility at each level, the unexplained 

variance and the percent of explained variable by variables. Variances of driving volatility 

between regions were 100% explained. Variances of driving volatility across counties are 

also explained very well. However, the Level 2 and Level 1 still have a sizable unexplained 

variables, which means more variables that describe these two levels are needed.  
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TABLE 12 Modeling Results (Fixed Effects) 

Model Full Model (Model #1) Final Model (Model #3) 

Y = Driving Volatility β P-value β P-value 

Constant 5.373   0.253 5.238   0.248 

Level-1  

Trip Distance (Mile) -0.042 ** 0.000 -0.042 ** 0.000 

Rush Hour  [Yes] 0.465 ** 0.000 0.465 ** 0.000 

Weekend  [Yes] -0.585 ** 0.000 -0.586 ** 0.000 

Commute Trip [Yes] 0.656 ** 0.000 0.656 ** 0.000 

Level-2  

Gender [Male] -0.017   0.915       

Driver Age (years) -0.058 ** 0.000 -0.058 ** 0.000 

Vehicle Age (years) -0.125 ** 0.000 -0.126 ** 0.000 

Body type 

Auto-Sedan  Base           

Two Seated  1.809 ** 0.000 1.814 ** 0.000 

Van  -2.394 ** 0.000 -2.405 ** 0.000 

Hatchback -3.134 
 

0.258 -2.708 
 

0.323 

SUV  -0.885 ** 0.000 -0.886 ** 0.000 

Station Wagon  -1.002 ** 0.022 -1.009 ** 0.021 

Pickup  -2.186 ** 0.000 -2.195 ** 0.000 

Convertible 2.441 ** 0.003 2.450 ** 0.003 

Unknown body type -0.804 ** 0.034 -0.808 ** 0.033 

Fuel type 

Hybrid electric Vehicles -1.490 ** 0.000 -1.479 ** 0.000 

Gasoline vehicles Base 
  

  
 

  

Diesel vehicles -1.110 ** 0.013 -1.100 ** 0.014 

Plug-in hybrid electric vehicle -0.520 
 

0.634 -0.535 
 

0.623 

CNG (Compressed Natural Gas) -0.726 
 

0.453 -0.715 
 

0.459 

BEV (Battery Electric) vehicle -2.572 ** 0.000 -2.579 ** 0.000 

Flex fuel vehicle 0.928 
 

0.537 0.911 
 

0.545 

Unknown fuel type -0.777   0.438 -0.803   0.422 

 Level-3 

Contextual 

data 

Percent of persons 65 years and over -0.099   0.138 -0.084   0.175 

Percent of females 0.127 
 

0.223 0.178 * 0.054 

Percent of persons with college 

degrees 

-0.039 
 

0.299   
 

  

Mean commute time for work 

(minutes) 

0.042 
 

0.340   
 

  

Median household income (dollars) ^0.000 ** 0.016 ^0.000 ** 0.001 

Percent of persons in poverty 0.036   0.429       

Geographic 

information 

Road pattern [Non-Gridiron] -0.539 * 0.083 -0.561 * 0.052 

Road network density (miles per 

square miles) 

0.014 
 

0.751   
 

  

General terrain [Flat] Base 
  

  
 

  

General terrain [Rolling] -0.261 
 

0.402   
 

  

General terrain [Hilly] -0.175 
 

0.643   
 

  

Coast area [Yes] 0.363   0.290 0.364   0.224 

Exposure  

data 

Maintained highway miles, Total 0.000   0.917       
Percent of urban maintained highway 

miles 

2.084 * 0.066 2.859 ** 0.000 

Percent of urban daily vehicle miles  

traveled 

0.945   0.518       

Level-4  
Region 

Indicator 

LA 0.942   0.108 1.370 ** 0.003 

SF -0.492 
 

0.411 0.001 
 

0.998 

SAC 0.458 
 

0.390 0.669 
 

0.179 

CCV 0.307 
 

0.631 0.671 
 

0.248 

Other CA areas Base 
  

  
 

  

ATL 0.019 
 

0.979 0.159 
 

0.774 

Notes:  

** = significant at a 95%confidence level; * = significant at a 90% confidence level, ^: the 

coefficient of household income is positive. 
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TABLE 13 Modeling Results for Random Effects and Summary Statistics 

Model Full Model (Model #1) Final Model (Model #3) 

Random effects: Variance across groups 

Hierarchies 

Total 

varianc

e 

Unexplaine

d variance 

Percent 

of 

explaine

d 

variance 

Total 

varianc

e 

Unexplaine

d variance 

Percent 

of 

explaine

d 

variance Level 4: Region level  1.236 0.000 100.00% 1.236 0.000 100.00% 
Level 3: County level 2.138 0.103 95.20% 2.138 0.101 95.27% 

Level 2: Driver level 21.361 18.947 11.30% 21.361 18.972 11.18% 

Level 1: Trip level 30.308 29.825 1.59% 30.308 29.825 1.59% 

Summary Statistics 

Log Likelihood (Model) -287186.1 -287188.1 
Degree of Freedom 47 38 

AIC 574466.3 574452.2 

BIC 574908.7 574809.9 

Wald Chi-square 2176.020 2167.82 

Prob. > Chi-square 0.000 0.000 

Likelihood Ratio Test: Hierarchical vs. OLS 

model 

0.000 0.000 

 

 All Level 1 variables for trip features have a statistically significant correlation (at 

95% level) with the driving volatility, however, the correlation varies across drivers. Driver 

age, vehicle age, vehicle body type and fuel type at Level 2 also have a statistically 

significant coefficient, which may vary across counties. The variable at Level 3, household 

income, is significantly related to the driving volatility at county level. Regional dummy 

variables at Level 4 show the differences of driving volatility across regions. Results show 

drivers in Los Angeles have significantly greater driving volatilities than drivers in other 

California areas.  

 

Discussion of Key Variables 

Vehicle Features 

As expected, vehicle features including vehicle age, body types and fuel types are 

significantly correlated to the trip-level driving volatilities. Older vehicles are associated with 

smaller driving volatilities. One unit increase in vehicle age corresponds to 0.126 units 

decrease in the driving volatility. Compared with auto-sedan, two-seated vehicles and 

convertibles are associated with higher level of driving volatilities, by a 1.814 and 2.45 units 

increase respectively. Note that one unit increase in trip-level driving volatility indicates one 

point increase in the percent of extreme driving seconds (i.e., large vehicular jerk values) 
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over the duration of one trip. Vehicles in other body types are associated with smaller driving 

volatilities. The modeling also reveals that vehicles consuming different type of fuels or 

energies perform differently in terms of the driving volatility. Compared with the gasoline 

vehicles, hybrid vehicles are associated with 1.479 units lower driving volatilities, battery 

electric vehicles are with 2.579 units lower driving volatilities and diesel vehicles are seen to 

be 1.1 units lower driving volatilities.    

 

Driver Socio-Demographics 

Senior drivers seem to be less volatile in driving than young drivers. Specifically, one year 

increase in driver age is related to 0.058 units decrease in driving volatilities. The modeling 

did not reveal a significant different driving volatility between male and female drivers. 

 

Trip factors 

All trip factors included in the model show a significant correlation with the driving 

volatility. Long trips are seen to be less volatile, perhaps because long trips are often made on 

freeways or interstates. Compared with trips made in non-rush hours, rush hour trips are 

associated with 0.456 units increase in driving volatilities. Weekend travel trips are less 

volatile than weekday trips. Trips made for work or school (commute trips) are more volatile 

than trips made for other purposes.  

 

Geographic information  

The geographic features of the road networks in a county was hypothesized to be associated 

with the driving volatility. However, as these are county-level geographic features, this 

modeling did not reveal strong correlations with the driving volatility, except the road 

pattern. Non-gridiron road patterns are likely associated with smaller driving volatilities. The 

insignificant estimates imply that there are not strong direct links between the county-level 

geographic features of road networks and the driving volatility, perhaps because these 

county-level features can hardly represent the environment of a specific road segment a 

driver is instantaneously perceiving during driving. Thus, understanding the influence of road 

characteristics on driving volatility needs detailed road information.  
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Contextual Information 

The contextual information in this study may represent some aspects of driving contexts in a 

county. The modeling results show that counties with higher household incomes are 

associated with higher driving volatilities. The percent of females in a county is negatively 

correlated with the driving volatility, which is a marginally significant estimate. A county 

with more seniors is associated with smaller driving volatilities, as expected. However, the 

association is not statistically significant. 

 

LIMITATIONS 

The data used in this study are from multiple sources. Driving volatility is generated from 

large-scale trajectory data. These data were collected using in-vehicle GPS and OBD devices 

during two regional travel surveys. The accuracy of the trajectory data should be considered 

carefully.  

 Given the privacy issues for the data released online for public research, critical 

information, such as locations, are not available from the trajectory database. Thus, it is 

difficult for this study to link the driving behaviors with the instantaneous driving contexts.  

 

CONCLUSIONS 

This study demonstrates integration and use of large-scale data. It extends the understanding 

of naturalistic driving performance measured by driving volatility (2, 42) and answers an 

important research question about whether the driving volatility varies across spatial 

contexts. Large-scale behavioral and vehicle trajectory data are coupled with data from 

various sources including FARS, historic traffic counts, google earth and census. Statistical 

analysis extracts useful information from hierarchically structured data, exploring links 

between driving volatility and correlates.  

County-level factors were investigated in terms of their associations with the driving 

volatility. Counties with higher percentages of urban roadway mileage are associated with a 

higher level of driving volatilities for drivers in this county, indicating that driving in urban 

areas are more volatile driving. However, other county-level factors, including contextual 

and geographical information, were not statistically significantly associated with driving 
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volatility. In addition, vehicle features, driver socio-demographics and trip attributes are 

found to be significantly correlated, given their more direct relationship with the trip-level 

driving volatility.  

 This study is useful for both practitioners and researchers who are aware of and 

accessible to various transportation data sources; it offers insights in integrating data from 

multiple sources and exploring links between driving behaviors and casual factors. With the 

increasing popularity of GPS and other information technology for collecting travel 

information, transportation-related “Big Data” will increase. Extracting useful information 

from the data will increase in its importance. This study has shown that hierarchical 

modeling provides an opportunity to extract useful information from big data with complex 

hierarchical structure. This study extends the understanding of driving performance and it 

will benefit the future work of mining large-scale transportation data. In terms of future 

research, similar models can be applied to study correlates of other regional transportation 

performance measures, such as vehicle miles or hours traveled.  
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DELIVERING IMPROVED ALERTS, WARNINGS, AND CONTROL ASSISTANCE USING BASIC 

SAFETY MESSAGES TRANSMITTED BETWEEN CONNECTED VEHICLES4 

 

Abstract - When vehicles share their status information with other vehicles or the 

infrastructure, driving actions can be planned better, hazards can be identified sooner, 

and safer responses to hazards are possible. The Safety Pilot Model Deployment 

(SPMD) is underway in Ann Arbor, Michigan; the purpose is to demonstrate 

connected technologies in a real-world environment. The core data transmitted 

through Vehicle-to-Vehicle and Vehicle-to-Infrastructure (or V2V and V2I) 

applications are called Basic Safety Messages (BSM), which are sampled at a 

frequency of 10 Hz. BSMs describe a vehicle’s position (latitude, longitude, and 

elevation) and motion (heading, speed, and acceleration). This study proposes a data 

analytic methodology to extract critical information from raw BSM data available 

from SPMD. A total of 968,522 records of basic safety messages, gathered from 155 

trips made by 49 vehicles, was analyzed. The information extracted from BSM data 

captured extreme driving events such as hard accelerations and braking. This 

information can be provided to drivers, giving them instantaneous feedback about 

dangers in surrounding roadway environments; it can also provide control assistance. 

While extracting critical information from BSMs, this study offers a fundamental 

understanding of instantaneous driving decisions. Longitudinal and lateral 

accelerations included in BSMs were specifically investigated. Varying distributions 

of instantaneous longitudinal and lateral accelerations are quantified. Based on the 

distributions, the study created a framework for generating alerts/warnings alerts, 

warnings, and control assistance from extreme events, transmittable through V2V and 

V2I applications. Models were estimated to untangle the correlates of extreme events. 

The implications of the findings and applications to connected vehicles are discussed 

in this paper.    

                                                 
4 Material based on: Liu J. & A. Khattak. Improved Warning and Assistance Information from Connected 

Vehicle Basic Safety Messages, Accepted for presentation to 2015 Intelligent Transportation Systems World 

Congress, Bordeaux, France, 2015. A revised version of this paper, titled “Delivering Improved Alerts, 

Warnings, and Control Assistance Using Basic Safety Messages Transmitted between Connected Vehicles” was 

submitted to 2016 Transportation Research Board for review.  
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Keywords: Connected vehicle, basic safety messages, extreme events, speed and 

acceleration 

 

INTRODUCTION  

The United States has one of the largest highway transportation systems in the world. 

According to the highway statistics from US Department of Transportation (US DOT), since 

2010, the highway system in the US has exceeded 8.5 million lane miles (1) and vehicle 

miles traveled is around three trillion (2). Over 5.5 million police-reported traffic crashes 

occur annually. According to 2012 traffic safety facts (2), about 34,000 people were killed 

and 2.3 million people were injured. In recent years (2007-2011), the number of fatalities has 

declined, but the death toll is still too high. We still need critical improvements to make 

highway transportation systems safer. Connected vehicles can improve safety through 

exchange of critical information between vehicles and infrastructures.  

 Currently, there is no universally agreed-upon definition for connected vehicles. 

According to the Intelligent Transportation Systems Joint Program Office, connected vehicle 

technology is “the creation of a safe, interoperable wireless communications network that 

includes cars, buses, trucks, trains, traffic signals, cell phones, and other devices (3).” Like 

the Internet that connects computers, smart phones, servers and other terminals, connected 

vehicle communication networks connect vehicles, facilities, operation centers, and other 

utilities.  

 Connected vehicles are spawning new applications. Most previous safety applications 

such as air bags and seat belts help occupants survive crashes while connected vehicle 

applications are expected to help people avoid crashes altogether. Researchers have proposed 

applications of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) to inform drivers 

of roadway hazards and situations that they cannot immediately perceive using driver assist 

systems. This should help drivers make decisions to avoid dangers (4-8). V2V application 

enables vehicles to transmit data to and from surrounding vehicles, and V2I allows vehicles 

to communicate with infrastructures such as traffic signals. According to a US DOT report, 

V2V and V2I applications potentially address about 80 percent of traffic crashes (3), possibly 

because over 90 percent of traffic crashes are attributed to driver errors, including recognition 
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errors, decision errors, and performance or nonperformance errors (9). V2V and V2I 

applications are expected to help drivers perceive dangers and hazards and make better 

decisions. 

 A connected vehicle safety pilot program, Safety Pilot Model Deployment (SPMD), 

underway in Ann Arbor, Michigan intends to demonstrate V2V and V2I technologies in a 

real-world environment (10). Approximately 3,000 vehicles are equipped with V2V 

communication devices, and 75 miles of roadway are instrumented with roadside equipment, 

mainly placed at signalized intersections. Data acquisition systems (DAS) are installed in 

vehicles participating in the program to facilitate V2V and V2I communications. Data 

transmitted through V2V and V2I are called Basic Safety Message (BSM), sampled at a 

frequency of 10 Hz. The core contents of BSM are data elements that describe a vehicle’s 

position (latitude, longitude, and elevation) and motion (heading, speed, and acceleration) 

(10). BSM also contains data pertaining to the vehicle’s component status (lights, brakes, 

wipers) and vehicle safety information (path history, events) (10). Given the availability of 

advanced communication and sensor technologies such as Global Positioning Systems 

(GPS), Radar, and Bluetooth, there is no doubt that BSMs can be successfully sent and 

received by vehicles and roadside equipment. SPMD is a demonstration of such 

communication technologies.  

 Using these technologies, what kind of critical information can be extracted and 

provided to drivers to alert them to present dangers or assist in vehicle control to help drivers 

make safe decisions? Driver-oriented information is supposed to be simple and informative, 

such as head-on collision warnings. This study proposes an original methodology, based on 

data analytics, to extract critical information from basic safety messages transmitted between 

connected vehicles and infrastructure.  

 

LITERATURE REVIEW 

The literature reflects substantial activities in connected vehicles (CVs), covering a wide 

range of topics from how CVs will be adopted and used, to their applications and 

implications for safety, energy, and the environment (11-15). A report by Hill et al. discusses 

CV infrastructure deployment approaches and strategies, including the time horizon, key 
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issues related to drivers and vehicles, operations, benefits for state and local agencies, and 

early CV adopters (16). Substantial work has been done to establish connected vehicle 

networks, such as Vehicular Ad-hoc Networks (5, 17). Both the public and private sectors are 

interested in applications and implications of CVs. Applications include intersection signals 

(6, 18-22), pavement assessments (23), traffic queue estimation (24), vehicle routing and 

travel time estimation (25-28), driving behavior monitoring and warnings (29-33), and fuel 

efficiency (34).  

 The key to the success of connected vehicles lies in how well connectivity of vehicles 

and infrastructure works in real life. Recent innovations that enable connectivity include 

applications of V2V and V2I. supported by wireless communication technologies such as 

Dedicated Short Range Communication (DSRC)(35, 36), Wi-Fi (37, 38), Bluetooth (39, 40), 

and cellular networks (41, 42).  

 Safety Pilot Model Deployment (SPMD) uses Basic Safety Messages (BSMs) to 

describe a vehicle’s position, motion, its component status, and other relevant travel 

information (10). However, the BSMs are not informative to drivers when they need to make 

decisions based on information received through V2V or V2I applications. Most BSMs 

describe normal driver behaviors. However, abnormal and extreme driver behaviors 

determine the safety of driving the short-term. Thus, it is critical to identify abnormal or 

extreme behaviors from BSMs, and warn drivers through the V2V, V2I, or other connected 

vehicle applications.  

 A number of studies have focused on investigating driving behaviors. Vehicle motion 

(speed and acceleration) has been regarded as the core information describing driving 

behaviors. Fast driving is normally characterized as an aggressive or reckless driving style, 

and speed limits are usually the threshold that determines a driver’s performance (43-46). 

However, speed choice depends mainly on the conditions of speed limits (or road conditions) 

and the traffic. A driver is supposed to comply speed limits, but he or she is also affected by 

the traffic (47, 48). Researchers give several acceleration cut-off points as thresholds to 

identify abnormal, extreme, and aggressive driving behaviors. Kim and Choi report 

thresholds for aggressive and extremely aggressive accelerations in urban driving 

environments (49), while De Vlieger et al. did similar work for calm driving, normal driving, 
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and aggressive driving (50).  

 Driving occurs in various conditions, and driver behaviors may vary in different 

contexts. To account for the variation of driving behaviors under different conditions, Liu et 

al. and Wang et al. introduced a varying acceleration threshold to identify extreme driving 

behaviors (51, 52). Most previous studies investigating driver behaviors overlook the 

directions (longitudinal and lateral) of driving decisions. Driving decisions in two directions 

(longitudinal and lateral accelerations) are under-explored. This study proposes an innovative 

way to identify extreme driving behaviors embedded in BSMs that may provide warning 

messages to drivers through V2V and V2I applications. 

 While previous studies propose ideas for warnings or alerts to drivers using the CV 

applications (29-33), they have not fully assimilated the value of information transmitted 

between connected vehicles. For example, Noble et al. (53) used only naturalistic driving 

data collected through the Strategic Highway Research Program 2 (but not BSMs) for 

analysis, and Osman et al. (33) used driving simulator based data. This study fully mines the 

geo-referenced data transmitted between vehicles and infrastructure in a real-life CV 

deployment. Specifically, it extracts useful information about extreme events from new data 

sources made possible by communication between connected vehicles.  

  

METHODOLOGY 

Recently, NHTSA and SAE have come out with levels of automation that range from no 

automation to full automation (54). Figure 22 shows the how drivers can transition from 

controlling all aspects of the dynamic driving task to relinquishing control of these tasks. 

Based on the taxonomy, this study focuses on Level 0 in the SAE taxonomy. Within Level 0, 

the study transitions from driving without alerts, warnings, or intervention systems to using 

these for enhanced driving safety. Increasingly, vehicles are incorporating driver decision 

support systems, while drivers retain control of steering and braking controls, except in crash 

imminent situations. Alerts, warnings, and control assists can be divided into two broad 

categories: 
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 1) Internal to the functioning and performance of the driver or vehicle. Examples of 

these include warnings about hard accelerations or braking, or frequent lane changes, sharp 

turns, or functioning of wipers, head- and tail-lights, turn signals, etc. 

 2) External to the vehicle. These are warnings that relate to proximity of other 

vehicles, objects, infrastructure, and the environment, and include forward collision warning 

or lane departure warning.  

 This paper considers both types of alerts, warnings, and control assists, which are still 

part of Level “0.” Such warnings are based on BSM data, and can eventually lead to higher 

levels of automation.  

 

FIGURE 22 Six levels of driving automation. Source: SAE, J3016, 2014 (54). 

 

Data Description - Basic Safety Message 

The data used in this study are from BSMs sent and received by vehicles and roadside 

equipment participating the SPMD in Ann Arbor, Michigan (10). SPMD provides a rich 

database for research on connected vehicles. The data are stored in a transportation data 



 

 Big Data for Safety Monitoring, Assessment and Improvement  104 

sharing system, called Research Data Exchange (RDE, https://www.its-rde.net/home), 

maintained by the Federal Highway Administration under US DOT. This study uses datasets 

collected from participating vehicles equipped with Data Acquisition Systems (DAS). 

Datasets contain vehicles’ instantaneous driving statuses (sampled at 10 Hz) of position 

(altitude, latitude and longitude), motion (speed and acceleration), the status of major 

components (accelerator, brakes, lights, cruise control, and wipers), and instantaneous 

driving contexts (surrounding objects, and distance to closest objects). Table 14 presents the 

detailed descriptions of key data variables. More variable descriptions are available in SPMD 

Data Handbook (10). 

 

TABLE 14 Variable Descriptions from Safety Pilot Model Deployment, Ann Arbor, 

Michigan 

Variable Description 

Position 

Altitude 

A GPS-based estimate of height above sea level (height 

above the reference ellipsoid that approximates mean 

sea level) 

Latitude 
Current degree of latitude at which the vehicle is 

located 

Longitude 
Current degree of longitude at which the vehicle is 

located 

Motion 

Speed (host vehicle) 
Current vehicle speed, as determined from the vehicle’s 

transmission 

Longitudinal 

Acceleration 

Longitudinal acceleration measured by an Inertial 

Measurement Unit (IMU) 

Lateral Acceleration Lateral acceleration measured by an IMU 

Vehicle 

Maneuvering 

Accelerator Pedal 
Reflects the amount the accelerator pedal is displaced 

with respect to its neutral position 

Brake Pedal Indicates whether the brake light is on or off 

Cruise Control Indicates whether cruise control is active/engaged 

Turn Signal 
Provides information regarding the state of the vehicle 

turn signals 

Driving 

Context 

Number of objects 
Number of identified objects, as determined by the 

Mobileye sensor 

Distance to the 

closest object 

Position of the closest object, relative to a reference 

point on the host vehicle, according to the Mobileye 

sensor 

Relative speed of the 

closest object 

Longitudinal velocity of the closest object, relative to 

the host vehicle according to the Mobileye sensor 

Source: SPMD Data Handbook (10). 

https://www.its-rde.net/home


 

 Big Data for Safety Monitoring, Assessment and Improvement  105 

 

 One-day sample data were used in this study. Observations with errors (e.g., speeds > 

200 mph and altitude > 30,000 ft) were removed from the sample. The final one-day sample 

contains 968,522 records of basic safety messages, from 155 trips made by 49 vehicles. The 

sum of trip durations is about 26.9 hours, and the average duration per trip is about 10.4 

minutes. Most of the trips were made within the road networks of Ann Arbor, Michigan, and 

some long trips reached the neighboring towns of Dexter, Chelsea, and Livonia in Michigan. 

Table 15 shows the descriptive statistics of selected BSM variables in the final datasets. 

Based on the error-checked descriptive statistics and the distributions, the data seemed to be 

of reasonably good quality. Figure 23 presents the spatial distribution of sampled data. 

Distributions of variables seemed reasonable in terms of magnitude and spatial 

characteristics.   

 

TABLE 15 Descriptive Statistics of Selected BSM Variables 

Variable 
Mean/ 

Percentage 

Std. 

Dev. 
Min  Max 

Position 

Altitude (ft) 724.603 81.076 496.388 1345.492 

Latitude (degree) 42.307 0.135 42.044 42.977 

Longitude (degree) -83.745 0.291 -85.635 -83.280 

Motion 

Host Vehicle Speed (mph) 38.507 23.249 0.000 83.346 

Longitudinal Acceleration (ft/s2) -0.367 2.107 -21.818 22.420 

Lateral Acceleration (ft/s2) -0.090 2.246 -22.310 22.330 

Vehicle  

Maneuvering 

Accelerator Pedal (%) 13.299% - 0.000 1.000 

Brake Pedal (engaged) 20.186% - 0.000 1.000 

Cruise Control (engaged) 38.822% - 0.000 1.000 

Turn Signal (None) 93.847% - 0.000 1.000 

Turn Signal (Left) 3.927% - 0.000 1.000 

Turn Signal (Right) 2.226% - 0.000 1.000 

Driving  

Context 

Number of objects 1.618 1.469 0.000 9.000 

Distance to the closest object (ft) 143.301 133.912 0.000 839.690 

Relative Speed of the closest object (mph) -3.893 21.829 -157.984 159.941 

Note: Sample size = 968,522 records.  
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FIGURE 23 Spatial Distribution of Trajectory Data in the Final Datasets 

 

Conceptual Framework 

The main objective of this study is to use data analytics to extract critical information 

embedded in BSMs sent and received by vehicles and infrastructure. Figure 3 shows the 

proposed framework to explore the BSMs and compile the raw BSMs into messages that can 

be communicated to drivers. These messages can inform the host vehicle drivers (i.e., raw 

BSMs are from the same vehicle) to adjust their driving behaviors, and also to give warnings 

and control assistance to remote vehicle drivers (i.e., raw BSMs are from other vehicles) to 

avoid potential dangers. In real-world environments, real-time BSMs are compiled into real-

time advisory or warning messages, directed to local drivers through V2V and V2I 

applications.  

 Understanding instantaneous driving volatility was one of the most challenging 

aspects of this study; this understanding can be accomplished by the BSM Compiler designed 

in Figure 24. Data sampled at a high frequency, 10 Hz, yielded deeper insights into 

instantaneous driving behaviors. This study used various data visualization tools to show the 

extent of instantaneous driving volatility, including distributions of longitudinal and lateral 

acceleration, speed-based distributions of instantaneous yaw rate, three-dimensional 

distributions of longitudinal acceleration-lateral acceleration-speed, and driving volatility on 

different road types. This paper provides data visualization details. Then, extreme driving 

events will be identified in accordance with special rules. One of the rules this study used is 

speed-based thresholds (51), since driving behaviors vary at different speeds, implying 

different driving contexts. These rules are discussed along with data visualization and 
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analysis. Further, these extreme events were linked to instantaneous vehicle control statuses 

and driving contexts to understand why they occur. Finally, advisory or warning messages 

and vehicle control assistance to drivers can be generated. 

 

 

FIGURE 24 Conceptual Framework 

 

EXTENT OF INSTANTANEOUS DRIVING VARIABILITY  

Driving on Road 

To observe how a vehicle moves on a road, 10-Hz motion data (speed, longitudinal, and 

lateral acceleration) from BSMs were visualized on maps according to position data 

(longitude and latitude). Figure 25 shows two sample trips made on different types of roads. 

Figure 25(i) presents one trip going through downtown Ann Arbor and Figure 25(ii) shows a 

trip that includes freeway driving. To illustrate the volatility of instantaneous driving 

decisions (i.e., variability of instantaneous accelerations), Figure 25 also shows the variance 

of longitudinal and lateral accelerations within one second, calculated by Equations (20) and 

(21) below.  
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 Equation (21) 

 

Where, 

VAR = Variance of accelerations 

n = number of observations within one second, n = 10 for 10 Hz data;  

i = time series (0.1 second), i ≥ n; 

𝑎
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

 = Record of instantaneous longitudinal acceleration; 

𝑎𝐿𝑎𝑡𝑒𝑟𝑎𝑙 = Record of instantaneous lateral acceleration.  

 

 As expected, driving on local roads is more volatile, in terms of variance of 

accelerations, than driving on a freeway because distractions such as pedestrians and 

roadside attractions are more frequent on local roads. For this reason, critical information 

extraction from BSMs should consider the difference of driving performance or behavior 

under different driving contexts. An easy way to distinguish the driving context would be 

travel speed. The travel speed on freeways would often be higher than on local roads, as 

indicated by speed limits. Figure 5 shows that higher speeds are associated with smaller 

variations of acceleration in two directions. Ahn et al. (55) report that higher accelerations 

are associated with lower speeds. Consequently, driving volatility might also be associated 

with speeds.  
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FIGURE 25 Instantaneous Driving Decisions Visualized on Road 

   

Distributions of Acceleration 

To clarify the relationship between speeds and acceleration, distributions of acceleration 

were visualized in two directions: longitudinal and lateral. Figure 26 presents the magnitude 

distribution of acceleration along speeds and the density of possible acceleration values 

along speeds. It shows that generally higher speeds (>50 mph) were associated with smaller 

acceleration magnitudes, which is partially consistent with Ahn et al. Vehicle engines have 

to do more work in order to maintain the same acceleration at higher speeds to overcome 

increasing air resistance. Therefore, the ability to accelerate or decelerate a vehicle decreases 

naturally at higher speeds (52). Ahn et al. (55) points out a linear relationship between 

acceleration and speeds, and this study reveals a nonlinear relationship between acceleration 

and speed in real-life driving situations. The varying distributions of instantaneous 

accelerations along speeds confirm the above findings that driving behavior varies in 

different driving situations, as reflected by driving speeds. In addition, Figure 26 also 

presents the distribution of longitudinal vs. lateral accelerations. The lozenge shaped 

distribution implies that longitudinal and lateral accelerations do not have large magnitudes 

simultaneously. In terms of their magnitude, longitudinal and lateral accelerations seem to be 

inversely correlated (correlation = -0.8343, p-value < 0.01).  
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FIGURE 26 Distributions of Longitudinal and Lateral Acceleration  

 

 The distributions of longitudinal and lateral accelerations were visualized in three-

dimensional space, according to their relative magnitude and direction. The resultant 

instantaneous acceleration of a vehicle is the sum of motion vectors of longitudinal and 

lateral acceleration, as shown in Equation (22).  

𝐴 = 𝑎⃗𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 + 𝑎⃗𝐿𝑎𝑡𝑒𝑟𝑎𝑙   Equation (22) 

 The magnitude of resultant instantaneous acceleration 𝐴 is  

|𝐴| = √(𝑎⃗𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
2

+ 𝑎⃗𝐿𝑎𝑡𝑒𝑟𝑎𝑙
2

)
2

 Equation (23) 

 The direction of resultant instantaneous acceleration 𝐴 is 

∆= 180

tan−1 (
𝑎⃗𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

𝑎⃗𝐿𝑎𝑡𝑒𝑟𝑎𝑙
)

𝜋
  

Equation (24) 

 ∆ is the counter-clockwise angle between vehicle heading direction and the direction 

of resultant instantaneous acceleration.  

 As shown in Figure 26, varying distributions implied variations in driving behaviors 

at given speeds and motion in different directions. To show the magnitude of distribution at 
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various speeds and directions, this study used different colors to indicate the relative 

magnitudes of accelerations by speed × sector bin in 0.5 mph × 2
°
. An example bin is shown 

in Figure 27. All magnitudes of accelerations were compared within a bin.  

  

 

FIGURE 27 Speed × Sector Bin  

 

 Figure 28 shows the three-dimensional distribution of accelerations at different 

speeds and directions. The view of sectional drawings reveals the magnitude of 

instantaneous accelerations. Blue implies that the magnitudes of accelerations are close to 

zero compared to other accelerations within the same bin, and red indicates greater 

magnitudes. Same color indicates that magnitudes of acceleration within different bins were 

at the same percentiles, forming percentile bands. Magnitudes of longitudinal and lateral 

accelerations varied with different speeds. Magnitudes at lower speeds were relatively larger 

than at higher speeds, illustrated by the percentile bands, as shown in Figure 28(iii) and (iv). 

The cross orthogonal shape, shown by the blue and yellow area in Figure 28 (ii), implies that 

magnitudes of accelerations that were parallel or perpendicular to the heading directions 

were relatively greater than those diagonal to heading directions. This confirmed that 

instantaneous driving decisions varied in different directions, which is useful for identifying 

extreme driving events such as sudden lane change behaviors.   
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FIGURE 28 Distributions of Longitudinal and Lateral Acceleration in 3-D Space 

 

IDENTIFICATION OF EXTREME EVENTS 

Previous studies indicate that extreme driving events (e.g., hard braking or acceleration) are 

associated with aggressive driving behaviors. However, aggressive driving might be one 

reason for extreme events. Road situations and vehicle conditions such as obstacles on roads, 

poor pavements, slippery road surface, sharp curves, and sensitive accelerating or brake 

systems can also be reasons for extreme driving events. Researchers have given cut-off 

acceleration values as a threshold for defining extreme (aggressive) driving and calm 

(normal) driving (49, 50, 56, 57). In light of the varying distributions of instantaneous 
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accelerations along speeds and at various directions, this study proposes an innovative way 

to identify extreme events, which are the core information generated for drivers from BSMs 

and transmitted thru V2V and V2I applications. Our previous studies revealed the extreme 

acceleration events based on driving speeds (51, 52), caused by the limited dimension of 

vehicle motion data. This study used data that contains both longitudinal and lateral 

accelerations. Extreme events of acceleration in different directions potentially correspond to 

different warning and control assist messages. For example, if an extreme event is 

acceleration going straight ahead, head-on warnings might be generated, and if it is an 

acceleration going to the right side, vehicles on the right lane might be warned through V2V 

applications.  

 Unlike previous studies that give cut-off values as a threshold regardless of driving 

situations, this study proposes thresholds that change with speeds that account for different 

driving situations to a greater extent. In addition, the directional variation of acceleration 

distributions was considered when defining the thresholds. This study used 95th percentile 

values in each bin as the thresholds. The thresholds could be customized according to the 

acceptable levels of driving volatility. Since the thresholds were generated based on possible 

values in a specific bin, they varied at different speeds and directions. Figure 29 presents: (i) 

an aggregated threshold surface that is enclosed like a cylinder with varying radii at different 

speeds and directions; (ii) identified extreme acceleration events (i.e., gray dots out of the 

surface); and (iii) an enlarged image of figure (ii). Note that the threshold surface was fitted 

using the 95
th

 percentile magnitudes of longitudinal and lateral accelerations within the one 

speed×sector bin. The radii of the enclosed surface were greater for lower speeds and 

narrower for high speeds, as shown in Figure 28 (iii) and (iv). Accelerations parallel or 

perpendicular to the heading directions had greater radii than did those diagonal to heading 

directions, as shown in Figure 28 (ii).  
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FIGURE 29 Plots of Extreme Acceleration Events (hollowed in side) 

 

 Figure 31 presents a sample trip with identified extreme events (see Warnings and 

Control Assist) and their locations on a map. Note that the warnings and control assists were 

generated based on the 95
th

 percentile thresholds introduced above, and if more than five 

successive BSMs (> 0.5 seconds) beyond the 95
th

 percentile thresholds were identified 

together one warning or control assist can be generated as shown in Figure 30. 

 Extreme events seemed to be located at critical driving conditions, such as sharp turns 

and complex intersections. A zoomed-in view of the warning and control assist locations 

shows that this is a six-way intersection consisting of three two-way roads with pedestrian 
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sidewalks, as shown in Figure 31(ii). Three locations generated three separate warnings and 

control assists. Warning and control assist 1 indicated the potential for poor sight distance 

caused by roadside plantings on East Madison Street. Warning and control assist 2 pointed 

out driver behaviors influenced by the intersecting traffic from Packard Street. Warning and 

control assist 3 was possibly associated with the pedestrians crossing South Division Street. 

The methodology proposed in this study identifies extreme events and locates them 

accurately in space.  

 
FIGURE 30 Generating Warnings and Control Assists 

 

 
FIGURE 31 Extreme Events Identified in Space 
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UNDERSTANDING EXTREME EVENTS 

One question to be answered after the identification of extreme events was whether these 

extreme events made sense in terms of vehicle maneuvering and driving. To understand the 

correlates of extreme events, simple regression models were estimated. Factors included 

vehicle maneuvering (accelerator, brakes, and cruise control), and instantaneous driving 

contexts (surrounding objects, distance to closest objects). This study applied Negative 

Binomial (NB) regression model to predict the number of warning messages generated from 

BSMs during one trip. The NB regression model is given by: 

 

𝜇𝑖 = exp (𝑋𝑖𝛽 + 𝜀𝑖) Equation (25) 

  

 Where, 𝜇𝑖 = number of warnings and control assists during a trip i, i = 1, 2, 3,…, n; 𝑋𝑖 

= explanatory variables; 𝛽 = a vector of estimated coefficients; exp (𝜀𝑖) = a gamma-

distributed error term. The coefficients in NB model are estimated under the NB probability 

function, 

Pr(𝑦𝑖 = 𝑘) =
г[(1/𝛼) + 𝑘]

г(1/𝛼)г(𝑘 + 1)
[

1/𝛼

(1/𝛼) + 𝜇𝑖
]

1/𝛼

[
𝜇𝑖

(1/𝛼) + 𝜇𝑖
]

𝑘

         Equation (26) 

  

 Where, 𝑦𝑖 = observed number of warning and control assists during trip i; k = 

possible number of warning and control assists during a trip; 𝛼= over-dispersion parameter. 

Note that 𝜇𝑖~ 𝐺𝑎𝑚𝑚𝑎 (
1

𝛼
, 𝛼𝜇) and 𝜇 are both the mean and variance of observed number of 

warning and control assists fitted in Poisson distribution. 𝛼 is the over-dispersion parameter. 

For Poisson regression model, 𝛼 = 0. For Negative binomial regress model, 𝛼 is significantly 

larger than zero.  

 Table 16 shows the descriptive statistics of selected variables at trip level. Number of 

warnings and control assists is the dependent variable in NB model, and other variables 

related to warning and control assists are also shown in the table for future research purposes. 

On average, there are 7.23 warnings and control assists per trip. The trip with the greatest 

number had 39 warning and control assists while some trips had no warning and control 

assists. The longest warning and control assist lasted 19.1 seconds, as shown in Table 16. 
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Noticeably, there were some extremely short trips (less than 1 minute) because drivers did 

not always initiate data collection at the beginning of their trips. For those trips, the data 

relates to one segment of a trip. Distributions of other variables seemed reasonable, based on 

error checking. Also, correlations between explanatory variables were checked, and were 

found to be reasonable for modeling purposes.  

TABLE 16 Descriptive Statistics of Variables at Trip-Level 

Variable N Mean 
Std. 

Dev. 
Min  Max 

Warning 

Number of warning and control assists 155 7.23 8.22 0.00 39.00 

Total warning and control assist duration (second) 155 7.96 10.14 0.00 58.00 

Average duration per warning and control assist 

(second) 
155 0.80 0.62 0.00 3.35 

Longest warning and control assist duration (second) 155 2.11 2.67 0.00 19.10 

Trip Attribute 

Average speed (mph) 155 33.55 15.01 2.74 71.22 

Speed variance  155 228.96 158.60 0.06 728.58 

Maximum speed (mph) 155 53.06 14.62 12.66 83.35 

Trip length (mile) * 155 6.68 9.46 0.03 72.14 

Trip duration (minute) * 155 10.41 10.92 0.07 60.78 

Vehicle 

Maneuvering 

Average accelerator pedal displace (%) 155 13.97% 11.79% 0.00% 64.30% 

Maximum accelerator pedal displace (%) 155 38.28% 28.79% 0.00% 100.00% 

Brake pedal (engaged) (%) 155 23.08% 16.39% 0.00% 86.02% 

Cruise control (engaged) (%) 155 30.16% 37.78% 0.00% 100.00% 

Turn signal (left) (%) 155 4.71% 10.82% 0.00% 97.54% 

Turn signal (right) (%) 155 2.38% 5.70% 0.00% 60.03% 

Number of left turns 155 1.53 2.03 0.00 10.00 

Number of right turns 155 1.53 2.42 0.00 13.00 

Number of turns 155 3.06 3.99 0.00 21.00 

Driving 

Context 

Average number of objects 155 1.61 0.95 0.00 3.91 

Maximum number of objects 155 5.02 2.30 0.00 9.00 

Average distance to the closest object (ft) 155 163.76 149.98 21.33 839.69 

Min distance to the closest object (ft) 155 50.33 160.87 0.41 839.69 

Average relative speed of the closest object (mph) 155 -4.38 10.80 -80.86 12.03 

Max relative speed of the closest object (mph) 155 48.52 62.35 -66.27 159.94 

Min relative speed of the closest object (mph) 155 -68.81 45.89 -157.98 3.64 

*: There are some extreme short trips because drivers did not always initiate the data collection at the beginning 

of the trips. For those trips, the data refer to one segment of a trip.   
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 Table 17 presents the NB modeling results, including the full and final models. The 

likelihood ratio test showed that the over-dispersion parameter 𝛼 is significantly greater than 

zero in both models, which validates the use of NB regression instead of Poisson regression. 

Overall, the modeling results were reasonable, providing insights about the correlates of 

extreme events embedded in BSMs. Since some variables were highly correlated, such as trip 

length and trip durations, the final model was estimated by stepwise selection technique (58). 

As expected, higher trip average speeds were correlated with less warning and control assists 

while longer trips were associated with more warning and control assists. Interestingly, if the 

maximum speed during a trip is higher, then more warnings and control assists were 

generated. One possible reason could be that drivers who reach higher speeds may be 

pressing the accelerator harder and thus are more likely to get warnings and control assists.  

 For vehicle maneuvering, more time spent on braking was associated with more 

warnings and control assists, as expected. Driving context was highly correlated to the 

amount of warnings and control assists. Average number of objects encountered during a trip 

was negatively correlated to the number of warnings and control assists. The large number of 

objects indicated a higher level of traffic density and driving complexity, and drivers may 

have compensated by being more cautious. However, the maximum number of objects 

encountered was positively associated with the number of warnings and control assists 

generated. The distance to the closest object was positively associated with the number of 

warnings and control assists, which is expected. There was a positive correlation between the 

average relative speed of the closest object and the number of warnings and control assists, 

implying that the oncoming objects influenced driver behavior significantly. Note that the 

modeling results were limited to a relatively small sample size (N=155). The estimated 

coefficients may change as more data become available.  
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TABLE 17 Negative Binomial Models for Frequency of Extreme Events  

(Y=number of warnings/control assists during one trip) 

Variable 𝛽 P-value 𝛽 P-value 

Constant -1.030 
 
0.190 -0.361 

 
0.396 

Trip Attributes 

Average speed (mph) -0.014   0.582 -0.042 ** 0.000 

Speed variance  0.000 
 
0.675 

  
  

Maximum speed (mph) 0.043 ** 0.027 0.049 ** 0.000 

Trip length (mile)  -0.042 
 
0.212 

  
  

Trip duration (minute)  0.052 * 0.083 0.024 ** 0.041 

Vehicle Maneuvering 

Average accelerator pedal displacement (%) -0.004 
 
0.774 

  
  

Maximum accelerator pedal displacement (%) -0.001 
 
0.858 

  
  

Brake pedal (engaged) (%) 1.546 
 
0.226 2.000 ** 0.006 

Cruise control (engaged) (%) -0.455 
 
0.151 

  
  

Turn signal (left) (%) -0.297 
 
0.804 

  
  

Turn signal (right) (%) -0.298 
 
0.846 

  
  

Number of turns 0.035 
 
0.214 

  
  

Driving Context 

Average number of objects -0.476 ** 0.014 -0.449 ** 0.007 

Maximum number of objects 0.212 ** 0.018 0.205 ** 0.007 

Average distance to the closest object (ft) 0.002 
 
0.453 0.002 ** 0.001 

Min distance to the closest object (ft) 0.001 
 
0.669 

  
  

Average relative speed of the closest object (mph) 0.045 ** 0.012 0.036 ** 0.008 

Max relative speed of the closest object (mph) -0.002 
 
0.284 

  
  

Min relative speed of the closest object (mph) -0.001   0.690       

SUMMARY STATISTICS             

α 0.797 
  

0.854 
 

  

Likelihood-ratio test of α=0 354.020 ** 
 

385.020 **   

Number of observations 155 
  

155 
 

  

Log Likelihood -425.012 
  

-428.885 
 

  

Log Likelihood 𝝌2 80.960 
  

73.210 
 

  

Prob. > 𝝌2 0.000 
  

0.000 
 

  

Pseudo R2 0.087     0.079     

Note:  
1. ** = significant at a 95% confidence level;  

2. * = significant at a 90% confidence level; 

 

 

LIMITATIONS  

Data used in this study were BSMs sent and received by connected vehicles through V2V 

and V2I applications. Participating vehicles equipped with Data Acquisition Systems (DAS) 
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collected the BSMs. Thus, the extent of measurement errors in the data was unknown, 

although the results from data visualization and modeling were reasonable.  

 A threat to the validity of this study is the limited sample size. Only one-day sample 

data from the SPMD is publicly available in Research Data Exchange (RDE, https://www.its-

rde.net/home). Consequently, this study can be regarded as an exploration of BSMs 

transmitted by real-world connected vehicle technologies. As more data become available, 

the methodology of this study can be applied directly for a broader exploration, and the 

results of this study can be validated by expanded sample data.  

 

CONCLUSION 

The connected vehicle technologies discussed in this paper are capable of transmitting high-

frequency data between vehicles and infrastructure, which has the potential to improve 

mobility, safety, energy consumption, and the environment. In this context, it is important to 

maximize the value embedded in data generated by the entire ecosystem of vehicles and 

infrastructure to support driver decision-making. SPMD provides data on basic safety 

messages, which are the core data sent and received by connected vehicles and infrastructure 

through V2V and V2I applications. The content of BSMs describe a vehicle’s position 

(latitude, longitude, and elevation) and motion (heading, speed, and acceleration) (10). BSMs 

also contains data pertaining to the vehicle’s component status (lights, brakes, wipers) and 

vehicle safety information (path history, events) (10). The raw BSMs are complex and not 

informative to drivers. This study proposes a data analytic methodology to extract critical 

information from raw BSMs. The information can be provided to drivers and inform them 

about their driving behaviors or about dangers in surrounding roadway environments. The 

information is simple and informative, and helps drivers make informed decisions. The 

research is timely and has long-term value, as connected and automated vehicles are likely to 

have substantial impacts throughout the world, and have seen substantial research activity.  

 Our previous studies have explored the critical information embedded in vehicle 

trajectory data, which were collected through GPS devices (51, 52). This study extended the 

methodology of extracting critical information from BSMs transmitted by V2V and V2I 

applications. This study established a fundamental understanding of instantaneous driving 

https://www.its-rde.net/home
https://www.its-rde.net/home


 

 Big Data for Safety Monitoring, Assessment and Improvement  121 

decisions by investigating two-dimensional instantaneous accelerations, i.e., longitudinal and 

lateral accelerations. Instantaneous driving volatility was visualized, and it clearly showed 

that driving behavior is strongly associated with driving contexts, whether driving on local 

roads or freeways. This study untangled the relationship between speeds and acceleration 

through the distribution of instantaneous accelerations at different speeds. Higher speeds 

(>50 mph) are associated with smaller acceleration magnitudes, which is consistent with 

Ahn et al. This study further revealed a nonlinear relationship between acceleration and 

speed in real-life driving situations. The lozenge shaped joint distribution implies that 

longitudinal and lateral acceleration hardly reached a large magnitude simultaneously. In 

terms of magnitude, longitudinal and lateral accelerations seemed inversely correlated.  

 This research presents an original idea, which is to establish context-relevant alert, 

warning, and control assist thresholds based on extreme event information embedded in 

BSMs. Most previous studies give fixed cut-off values for thresholds regardless of driving 

situations (49, 50, 56, 57). However, some of the thresholds for warnings and control assists 

may be flexible and can change with speeds to account for different driving situations and 

contexts. In addition, the directional variation of acceleration distributions is considered in 

establishing the thresholds. Information about extreme driving decisions can be used for 

control assists and provided as feedback to drivers in real time to help them shift to calmer 

driving, and transmitted to other drivers surrounding through V2V applications to warn them 

about potential dangers.  

 Results from rigorous statistical modeling revealed that the extreme events identified 

from BSMs are highly associated with trip attributes, driver maneuvering, and driving 

contexts. The results from modeling provide correlates of extreme events.   

 This study contributes by making sense of high-frequency geo-referenced connected 

vehicle data, and extracts critical information about extreme events from new data sources 

created by communications between connected vehicles. Connected vehicles are a relatively 

new and emerging area of research activity in intelligent transportation systems, with strong 

interest from a wide audience that includes government agencies, auto makers, practitioners 

and researchers who are interested in implementing connected vehicles.  

 The findings of this study are relevant to promoting transportation system objectives 
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by incorporating alerts, warnings, and control assists in V2V and V2I applications of 

connected vehicles. This will help drivers identify extreme events surrounding them quickly 

so they may avoid dangers by taking evasive actions. For example, the warnings can identify 

dangers of side-collisions (if there are extreme lateral accelerations), forward or rear 

collisions (if there are extreme longitudinal accelerations), and so on. In addition, vehicle 

information can be provided to analysts in a traffic operations center to better manage traffic 

through eco-routing and route diversion decisions.    
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