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EXECUTIVE	SUMMARY	
	

Until	recently,	most	CMFs	from	before-after	evaluations	were	provided	as	point	estimates	representing	
the	average	effect	of	a	particular	treatment.		In	some	cases,	disaggregate	analysis	is	conducted	and	CMF	
estimates	are	provided	for	different	categories	of	an	independent	variable	(e.g.,	CMF	estimates	are	
provided	for	low	and	high	AADT	categories).		With	point	estimates,	the	practitioner	is	generally	forced	to	
use	the	same	CMF	value	for	a	particular	treatment.		To	overcome	this	problem,	crash	modification	
functions	(CMFunctions)	have	been	proposed.			

The	main	goal	of	this	study	was	to	investigate	different	model	forms	for	estimating	CMFunctions	using	
data	from	the	results	of	a	before-after	EB	evaluation.		Three	different	model	forms	were	explored	
including	two	traditional	approaches,	normal	regression	(model	form	1)	and	lognormal	regression	
(model	form	2),	and	a	new	negative	binomial	regression	approach	(model	form	3).		With	the	traditional	
approaches,	the	dependent	variable	is	the	CMF	for	a	particular	site	(or	group	of	sites),	and	sites	are	
usually	grouped	(or	aggregated)	in	order	to	obtain	a	stable	estimate	of	the	CMF	and	the	standard	error	
of	the	CMF.	With	the	new	negative	binomial	regression	approach,	the	numerator	of	the	CMF	is	used	as	
the	dependent	variable	and	the	denominator	of	the	CMF	is	used	as	an	offset.		The	negative	binomial	
regression	approach	does	not	require	the	aggregating	of	data	from	individual	sites,	and	could	provide	
more	insights	that	may	be	lost	due	to	the	aggregation.			

The	project	team	sought	data	from	multiple	states	in	order	to	compare	the	performance	of	these	
different	types	of	CMFunctions.		Finally,	data	from	the	results	of	a	before-after	evaluation	conducted	for	
North	Carolina	Department	of	Transportation	were	used	for	comparing	the	results	from	the	three	
different	approaches	for	estimating	CMFunctions.		The	treatment	was	the	implementation	of	traffic	
signals	at	intersections	that	were	controlled	by	stop	signs	on	the	minor	roads.			

First,	the	data	were	aggregated	and	CMFunctions	were	estimated	using	the	three	model	forms.		For	the	
first	two	model	forms,	CMFunctions	were	estimated	with	and	without	weights.		With	the	aggregated	
data,	the	results	from	model	form	3	compared	quite	favorably	with	that	of	the	traditional	model	forms	1	
and	2,	especially	for	the	CMFunction	that	was	estimated	for	injury	and	fatal	crashes.		Then,	CMFunctions	
based	on	model	form	3	were	estimated	using	the	original	site-level	results	from	the	before-after	
evaluation	(i.e.,	without	aggregation).		The	CMFunctions	with	the	disaggregate	data	included	
independent	variables	that	were	not	significant	in	the	models	based	on	the	aggregated	data,	indicating	
the	value	of	using	model	form	3	to	estimate	CMFunctions	using	disaggregate	data.	

Matching	funds	for	this	study	were	provided	by	National	Cooperative	Highway	Research	Program	
(NCHRP)	through	Project	17-63	(Guidance	for	the	Development	and	Application	of	Crash	Modification	
Factors).		The	authors	thank	NCHRP	for	their	support.		The	authors	also	thank	the	members	of	the	
NCHRP	Project	17-63	for	their	support	throughout	this	study.	
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BACKGROUND	
A	crash	modification	factor	(CMF)	is	an	estimate	of	the	change	in	crashes	expected	after	implementation	
of	a	countermeasure.		Practitioners	can	use	the	CMF	in	quantifying	safety	in	many	ways	including	as	part	
of	the	roadway	management	process,	roadway	safety	audits,	alternatives	development	and	analysis,	
and	design	decisions	and	exceptions	(FHWA,	2014).		There	are	many	ways	to	estimate	the	CMF	
associated	with	an	engineering	improvement.		The	methods	for	estimating	CMFs	can	be	divided	into	two	
broad	categories:	cross-sectional	and	before-after.		Before-after	studies	include	“all	techniques	by	which	
one	may	study	the	safety	effect	of	some	change	that	has	been	implemented	on	a	group	of	entities	(road	
sections,	intersections,	drivers,	vehicles,	neighborhoods,	etc.)”	(Hauer,	1997,	p.	2).	On	the	other	hand,	
cross-sectional	studies	include	those	where	“one	is	comparing	the	safety	of	one	group	of	entities	having	
some	common	feature	(say,	STOP	controlled	intersections)	to	the	safety	of	a	different	group	of	entities	
not	having	that	feature	(say,	YIELD	controlled	intersections),	in	order	to	assess	the	safety	effect	of	that	
feature	(STOP	versus	YIELD	signs)”	(Hauer,	1997,	p.	2,	3).	

Many	safety	researchers	feel	that	CMFs	developed	using	cross-sectional	studies	may	not	always	be	
reliable	because	cross-sectional	models	rarely	represent	causal	relationships.		The	issues	associated	with	
the	CMFs	derived	from	cross-sectional	models	are	discussed	in	some	detail	in	Gross	et	al.,	(2010)	and	
Carter	et	al.,	(2012).		There	is	some	consensus	in	the	safety	research	community	that	properly	designed	
before-after	studies	provide	more	reliable	estimates	of	before-after	studies.	In	before-after	studies,	the	
CMF	is	estimated	based	on	two	parameters:	(1)	crashes	that	occurred	at	the	treated	sites	after	the	
treatment	is	implemented,	and	(2)	an	estimate	of	the	crashes	that	would	have	occurred	during	the	same	
‘after’	period	had	the	treatment	not	been	implemented,	and	the	variance	of	this	estimate.		Often,	sites	
are	not	selected	for	treatment	at	random;	practitioners	usually	select	high	crash	locations	for	treatment.		
This	non-random	selection	can	potentially	lead	to	bias	due	to	regression	to	the	mean	(RTM).		Using	the	
empirical	Bayes	before-after	method	has	now	been	accepted	as	one	way	of	addressing	the	potential	
bias	due	to	RTM.		Since	before-after	evaluations	are	based	on	information	from	sites	that	were	treated	
in	some	fashion,	the	sample	size	for	before-after	evaluations	usually	tend	to	be	smaller	than	the	sample	
that	is	used	in	cross-sectional	studies.	

Until	recently,	most	CMFs	from	before-after	evaluations	were	provided	as	point	estimates	representing	
the	average	effect	of	a	particular	treatment.		In	some	cases,	disaggregate	analysis	is	conducted	and	CMF	
estimates	are	provided	for	different	categories	of	an	independent	variable	(e.g.,	CMF	estimates	are	
provided	for	low	and	high	AADT	categories).		With	point	estimates,	the	practitioner	is	generally	forced	to	
use	the	same	CMF	value	for	a	particular	treatment.		To	overcome	this	problem,	crash	modification	
functions	(CMFunctions)	have	been	proposed.		Unlike	CMFs,	CMFunctions	are	equations	that	represent	
the	safety	effect	of	a	treatment	as	a	function	of	site	characteristics.		CMFunctions	are	not	necessarily	a	
new	concept.		In	fact,	some	CMFunctions	have	been	included	in	the	1st	edition	of	the	Highway	Safety	
Manual	(HSM)	(AASHTO,	2010).		However,	most	of	the	CMFunctions	in	the	HSM	are	based	on	cross-
sectional	models.	
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The	objective	of	this	effort	is	to	examine	different	ways	of	estimating	CMFunctions	based	on	
information	available	from	the	results	of	an	empirical	Bayes	before-after	evaluation.		The	following	
section	provides	an	overview	of	CMFunctions	that	have	been	estimated	in	the	recent	past.		This	is	
followed	by	a	discussion	of	the	different	methods	for	estimating	CMFunctions	that	will	be	examined	in	
this	study.	The	data	used	for	this	investigation	is	then	presented.		Finally,	the	results	and	conclusions	are	
presented	.	

RECENT	RESEARCH	ON	CRASH	MODIFICATION	FUNCTIONS	AND	
IMPLICATIONS	FOR	THIS	STUDY	

Summary	of	Recent	Research	
Dr.	Rune	Elvik	was	one	of	the	earliest	to	advocate	the	need	for	CMFunctions	in	highway	safety.		In	2005,	
Dr.	Elvik	published	a	paper	providing	guidance	for	conducting	meta-analysis	(Elvik,	2005a).		Meta-
analysis	is	essentially	the	approach	to	combine	the	results	from	multiple	studies.		This	is	typically	done	
by	weighting	the	safety	estimate	from	each	study	based	on	the	inverse	of	the	variance	of	the	estimate.		
In	Elvik,	(2005a),	there	is	also	a	discussion	about	the	use	of	meta-regression,	which	represents	the	safety	
effect	as	a	function	that	includes	site	characteristics;	this	meta-regression	is	done	based	on	the	results	
from	the	different	studies.	In	other	words,	meta-regression	results	in	a	CMFunction.		Subsequent	papers	
from	Dr.	Elvik	provided	CMFunctions	for	relationship	between	speed	and	crashes,	speed	enforcement,	
and	bypass	roads	(e.g.,	Elvik,	2005b;	Elvik,	2009;	Elvik,	2011).		His	most	recent	paper	(Elvik,	2015),	
provides	methodological	guidelines	for	developing	crash	modification	functions.	

Dr.	Elvik	advocates	that	different	functional	and	model	forms	should	be	explored	when	CMFunctions	are	
estimated.		He	also	suggests	that	the	variance	of	the	individual	CMF	estimates	should	be	considered	in	
appropriately	weighting	each	estimate.	

Most	of	the	CMFunctions	estimated	by	Dr.	Elvik	are	based	on	‘aggregate’	data,	i.e.,	each	data	point	is	a	
CMF	from	a	particular	study	usually	based	on	data	from	many	sites.		These	CMFunctions	are	indeed	very	
useful	to	study	the	effect	of	certain	treatment	characteristics.		However,	in	order	to	determine	the	
effect	of	site	characteristics	such	as	AADT,	CMFunctions	would	need	to	be	estimated	using	more	
‘disaggregate’	data.		A	few	recent	studies	have	estimated	CMFunctions	using	disaggregate	data.		A	brief	
overview	of	such	studies	is	provided	below.	

De	Pauw	et	al.,	(2014),	developed	CMFs	for	an	intersection	black	spot	treatment	program	based	on	a	
before-after	EB	evaluation.		The	results	from	the	EB	evaluation	were	then	used	to	estimate	a	
CMFunction.		Maximum	likelihood	linear	regression	was	used	with	the	natural	logarithm	of	the	CMF	for	
each	site	as	the	dependent	variable.		The	variance	of	the	CMF	estimate	was	not	used	in	the	
development	of	the	CMFunction.	

Similar	to	the	work	De	Pauw	et	al.,	(2014),	Juneyoung	Park	and	colleagues	recently	published	four	
papers	that	used	empirical	Bayes	before-after	methods	to	develop	CMFs	and	then	use	the	results	of	the	



 

Raghavan	Srinivasan	and	Bo	Lan   5 

CMFs	to	estimate	CMFunctions.		Park	et	al.,	(2014),	estimated	CMFunctions	for	determining	the	safety	
effect	of	shoulder	rumble	strips	and	widening	of	shoulders	on	rural	multilane	roadways.		Park	and	
Abdel-Aty	(2015)	followed	a	somewhat	similar	approach	in	estimating	CMFunctions	for	shoulder	rumble	
strips	and	shoulder	widening	on	rural	two	lane	roadways.		Park	et	al.,	(2015a),	estimated	CMFunctions	
for	adding	bike	lanes	for	urban	arterials.		Park	et	al.,	(2015b),	estimated	CMFunctions	for	widening	urban	
roadways.		In	these	papers,	Park	et	al.	explored	different	functional	forms	for	the	CMFunctions	and	in	
the	process	also	investigated	both	simple	and	complex	CMFunctions.		Some	of	the	papers	also	
considered	the	possibility	that	the	safety	effect	of	a	treatment	may	change	over	time.		However,	it	is	not	
clear	if	variance	of	the	individual	CMFs	were	considered	in	the	estimation	of	the	CMFunctions.	

Sacchi	et	al.,	(2014,	2015)	used	full	Bayes	(FB)	before-after	intervention	models	to	estimate	the	CMFs	for	
individual	sites	and	use	these	results	to	estimate	CMFunctions.		The	natural	logarithm	of	the	CMF	was	
the	dependent	variable.		The	variance	of	the	CMF	was	explicitly	considered	in	the	CMF	estimation	(the	
variance	of	the	CMF	was	estimated	using	MCMC	simulation).		An	important	focus	of	these	two	studies	
was	to	account	for	the	possibility	that	the	safety	effect	of	a	treatment	may	change	over	time.	

Implications	for	this	Study	
It	is	clear	that	further	work	is	needed	in	the	area	of	CMFunctions	especially	for	the	development	of	such	
functions	using	disaggregate	data	from	the	results	of	a	before-after	EB	evaluation.		It	is	unclear	if	the	
recent	studies	conducted	by	Park	et	al.	make	use	of	the	variance	of	the	CMF	estimates	(as	
recommended	in	the	series	of	studies	by	Elvik),	since	that	issue	is	not	specifically	discussed	in	the	paper.	

STATISTICAL	MODELING	APPROACHES	FOR	ESTIMATING	CRASH	
MODIFICATION	FUNCTIONS	
With	empirical	Bayes	before-after	studies,	the	equations	for	the	CMF	and	the	standard	error	of	the	CMF	
are	the	following	(Hauer,	1997):	

𝐶𝑀𝐹$∗ =
'(
)(
	 …………………………………………………………………..(1)	

𝐶𝑀𝐹$ =
*(
+(

,-
./0(+()
+(
3

	 …………………………………………………………………..(2)	

𝑉𝑎𝑟(𝐶𝑀𝐹$) =
789(

3 ./0(*()
*(
3 -

./0(+()
+(
3

,-
./0(+()
+(
3

3 	 ……………………………………………(3)	

Where,	𝐶𝑀𝐹$∗	is	the	biased	estimate	of	the	CMF	for	a	particular	site	i,	CMFi	is	the	unbiased	estimate	of	
the	CMF,	𝜆$ 	is	the	actual	number	of	crashes	in	the	after	period,	and	𝜋$ 	is	the	expected	number	of	
crashes	in	the	after	period	had	the	treatment	not	been	implemented.			The	unbiased	estimate	is	
different	from	the	biased	estimate	because	the	expected	value	of	the	ratio	of	two	random	numbers	is	
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not	the	same	as	ratio	of	their	expected	values	[i.e.,	if	A	and	B	are	two	random	numbers,	𝐸(=
>
) ≠

𝐸(𝐴)/E(B)].		Var	represents	the	variance	of	these	parameters.	

The	traditional	approach	for	estimating	CMFunctions	includes	the	use	of	the	CMF	value	as	the	
dependent	variable	and	site/treatment	characteristics	as	independent	variables.		One	way	to	express	
this	is	as	well	follows:	

CMF	=	f(site	characteristics)………………………………………………….(4)	

Where,	f	represents	a	generic	function.	

This	CMFunction	could	then	be	estimated	as	a	regression	equation.		Based	on	Elvik’s	recommendation,	
variance	of	the	CMF	needs	to	be	considered	in	this	estimation.		The	inverse	of	the	variance	is	typically	
introduced	as	a	weight	in	a	weighted	regression	model.		In	other	words,	for	an	observation	(or	site)	
whose	CMF	is	CMFi	with	a	variance	of	Var(CMFi),	the	weight	will	be	1/Var(CMFi).		For	linear	regression,	
this	would	be	appropriate.			

Some	recent	studies	have	recommended	the	use	of	a	different	model	form	such	as	a	lognormal	model	
that	would	ensure	the	predicted	CMF	from	a	CMFunction	would	always	be	greater	than	zero.		In	the	
case	of	the	log-normal	model,	Bonneson	(2015)	showed	that	the	appropriate	weight	for	a	weighted	log-
normal	regression	model	would	instead	be	[CMFi/Var(CMFi)]	(this	is	because,	based	on	equation	3,		the	
Var(CMFi)	is	not	independent	of	CMFi,	i.e.,	lower	CMFs	values	would	tend	to	have	lower	variances	as	
well).		

For	either	the	normal	regression	or	lognormal	regression	models	with	weights,	reliable	estimates	of	
CMFs	and	their	variances	are	needed.		In	order	to	have	reliable	estimates	of	these	parameters,	sites	with	
similar	characteristics	are	often	combined.		However,	this	aggregation	can	lead	to	loss	of	useful	
information.		

In	this	study,	a	new	approach	is	proposed	in	order	to	address	the	possible	disadvantage	with	grouping	of	
sites.		For	this	approach,	equation	2	is	rewritten	as	follows:	

𝐶𝑀𝐹$ =
'(

A( ,-
./0(+()
+(
3

	 ……………………………………	………………………..(5)	

Following	equations	1,	4,	and	5,		

𝐶𝑀𝐹$∗ =
'(
)(
= 𝑓 𝑠𝑖𝑡𝑒	𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠𝑖𝑡𝑖𝑐𝑠 ……………………………………..(6)	

𝐶𝑀𝐹$ =
'(

A( ,-
./0(+()
+(
3

= 𝑓(𝑠𝑖𝑡𝑒	𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)	 …………….(7)	

Equations	6	and	7	can	be	rewritten	as	follows:	
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𝜆$ = 𝜋$×𝑓(𝑠𝑖𝑡𝑒	𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)	 ……………(8)	

𝜆$ = 𝜋$ 1 + MNO()()
)(
3 ×𝑓(𝑠𝑖𝑡𝑒	𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)	 ……………(9)	

Written	in	the	form	of	equations	8	and	9,	it	is	possible	to	estimate	this	model	as	a	count	data	model	with	

𝜆	as	the	dependent	variable.		Based	on	equation	9,	the	offset	will	be	𝜋 1 + MNO())
)3

,	and	based	on	

equation	8,	the	offset	will	be	just	𝜋	(a	somewhat	similar	approach	was	investigated	by	Bonneson	and	
Pratt,	2008,	but	for	deriving	CMFs	from	cross-sectional	regression,	not	before-after	evaluation).		The	site	
characteristics	will	serve	as	independent	variables.		Negative	binomial	regression	is	usually	the	most	
appropriate	option	since	there	crash	data	are	typically	overdispersed.		Statistically,	it	is	unclear	if	the	

offset	should	be	just	𝜋	or	𝜋 1 + MNO())
)3

	since	the	 1 + MNO())
)3

	term	is	introduced	in	the	denominator	in	

equation	2	to	account	for	the	bias	when	two	random	variables	are	divided	(Hauer,	1997).		Another	issue	
with	this	approach	is	that	the	offset	is	not	a	fixed	measured	value,	but	estimated	as	part	of	the	EB	
procedure	with	a	variance.		There	has	been	some	limited	research	on	the	implications	of	errors/variance	
in	the	independent	variables,	but	further	research	is	needed,	possibly	using	simulation	(e.g.,	see	Weed	
and	Barros,	1987).	

In	summary,	three	model	forms	were	explored	in	this	study:	

• Model	Form	1.	Linear	regression	with	CMF	as	the	dependent	variable.		For	the	weighted	option,	
the	inverse	of	variance	of	the	CMF	was	used	as	the	weight.	
The	loglikelihood	(LL)	for	linear	regression	is	the	following:	

𝐿𝐿 = − ,
R

S( T(UA( 3

V
+ 𝑙𝑜𝑔 V

S(
+ 𝑙𝑜𝑔2𝜋 …………………………………………….(10)	

	
• Model	Form	2.	Log	normal	regression	where	log(CMF)	is	the	dependent	variable.		For	the	

weighted	option,	as	discussed	earlier,	the	ratio	of	the	CMF	to	its	variance	was	included	as	the	
weight.		The	LL	for	lognormal	regression	is	the	following:	

𝐿𝐿 = − ,
R

S( [\]	(T()UA( 3

V
+ 𝑙𝑜𝑔 V

S(
+ 𝑙𝑜𝑔2𝜋 ………………………………………(11)	

	
• Model	Form	3.	Negative	binomial	regression	with	the	observed	crashes	in	the	after	period	as	the	

dependent	variable.		The	offset	based	on	equation	9.		Future	research	could	consider	including	
offsets	based	on	equation	8	as	well.		The	LL	for	negative	binomial	regression	is	as	follows:	

𝐿𝐿 = 𝑦$𝑙𝑜𝑔
_A(
S(

− 𝑦$ +
S(
_

𝑙𝑜𝑔 1 + _A(
S(

+ 𝑙𝑜𝑔
` T(-

a(
b

`
a(
b `(T(-,)

…………(12)	

	 The	functional	form	for	the	negative	binomial	regression	model	was	the	typical	log-linear	form	
(investigation	of	other	forms	could	be	a	topic	for	future	research).	



 

Raghavan	Srinivasan	and	Bo	Lan   8 

In	equations	10,	11,	and	12,	𝑦$ 	refer	to	the	observed	values	of	the	dependent	variable,	𝜇$ 	is	the	
predicted	value,	𝑤$ 	is	the	weight,	𝜙	is	the	variance	parameter	to	be	estimated,	and	𝜋	is	a	constant.		In	
Model	3,	k	refers	to	the	overdispersion	parameter,	and	G	refers	to	the	gamma	function.		The	weights	for	
model	forms	1	and	2	were	discussed	earlier.		Based	on	equation	3,	the	weights	for	the	CMF	for	a	
particular	site	cannot	be	estimated	if	the	number	of	crashes	in	the	after	period	 𝑖. 𝑒. , 𝜆$ 	is	zero	for	that	
site.		This	is	one	of	the	reasons	model	forms	1	and	2	are	usually	implemented	with	aggregated	data.		On	
the	other	hand,	model	form	3	can	be	implemented	with	both	aggregate	and	disaggregate	data.	

At	this	time,	it	is	not	clear	if	a	weight	is	needed	for	model	form	3.	In	traditional	SPFs	that	are	estimated	
for	roadway	segments,	Hauer	(2001)	indicates	that	if	weight	is	not	used	(i.e.,	if	w	=	1,	for	all	the	sites),	
then	shorter	sections	have	an	inordinate	influence	on	the	results,	and	suggests	that	segment	length	be	
used	as	the	weight.		However,	this	is	a	different	context	where	the	negative	binomial	regression	model	
is	used	for	estimating	CMFunctions	rather	than	predicting	crash	frequency	as	a	function	of	site	
characteristics.		Future	research	could	investigate	the	appropriate	use	of	weights	in	this	context.	

DATA	
In	order	to	obtain	data	sets	to	explore	the	development	of	CMFunctions,	states	that	attended	in	the	
FHWA	CMF	low	cost	pooled	fund	TAC	meeting	in	June	2014	were	contacted	(over	35	states	participate	
in	this	annual	meeting	in	Washington,	DC).		The	intent	was	to	obtain	data	from	at	least	one	common	
treatment	that	would	provide	sufficient	data	to	investigate	the	different	options	for	estimating	
CMFunctions.		At	that	time,	HSRC	was	completing	a	study	for	NCDOT	to	evaluate	the	safety	of	left	turn	
lanes	when	stop	controlled	intersections	were	converted	to	signalized	intersections.		So,	HSRC	staff	
spoke	to	the	other	states	about	the	possibility	of	data	on	stop	to	signal	conversions	in	their	states.		
During	the	meeting,	four	states	(Ohio,	Utah,	Kentucky,	and	California),	agreed	to	review	their	project	
files	to	investigate	the	possibility	of	providing	us	with	data	on	stop	to	signal	conversions.		Following	the	
meeting,	Ohio	and	Kentucky	indicated	that	they	do	not	consistently	keep	records	of	such	conversions.		
For	Utah,	Professor	Grant	Schultz	from	Brigham	Young	University	provided	data	from	a	before-after	full	
Bayes	evaluation	of	stop	to	signal	conversions.		However,	the	intersections	used	in	this	evaluation	did	
not	include	information	on	minor	road	AADT.		Since	a	primary	reason	to	implement	stop	to	signal	
conversions	is	to	reduce	angle	crashes,	and	angle	crashes	are	a	function	of	both	major	and	minor	road	
traffic	volumes,	the	HSRC	team	felt	that	a	data	set	without	minor	road	AADT	would	not	be	very	useful	in	
this	study.		In	early	Fall	2015,	California	provided	location	information	for	four	locations	where	stop	to	
signal	conversions	were	made.		Since	the	sample	from	California	was	limited	and	the	data	from	Utah	did	
not	include	information	on	minor	road	AADT,	the	data	from	North	Carolina	were	used	in	this	study.	

North	Carolina	Data	
The	data	from	North	Carolina	was	based	on	a	recent	evaluation	conducted	by	Srinivasan	et	al.,	(2014)	
for	the	North	Carolina	Department	of	Transportation.	The	evaluation	was	based	on	117	intersections	
where	traffic	signals	were	installed;	all	these	intersections	were	controlled	by	stop	signs	on	the	minor	
road	approaches	before	the	signals	were	implemented.		None	of	these	117	intersections	had	any	left	
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turn	lanes	before	signalization.		During	signalization,	at	least	one	left	turn	lane	was	added	at	67	of	these	
intersections;	at	the	remaining	50	intersections,	left	turn	lanes	were	not	added.		Among	the	67	
intersections	where	at	least	one	left	turn	lane	was	added,	19	were	3-leg	intersections	and	48	were	4-leg	
intersections.		The	summary	statistics	and	the	CMFs	from	the	study	are	provided	in	the	following	
sections.	

Summary	Statistics	
Srinivasan	et	al.,	(2014)	conducted	an	empirical	Bayes	before-after	evaluation.		Tables	1	and	2	provide	
summary	statistics	for	the	117	treatment	sites	that	were	used	in	the	evaluation.		Separate	tables	are	
provided	for	3	and	4	leg	intersections.		Two	of	the	treatment	intersections	had	no	crashes	in	the	before	
period.		Among	the	67	intersections	where	at	least	one	left	turn	was	added,	one	had	negative	offset	left	
turn	lanes.		None	of	them	had	positive	offsets.	

Srinivasan	et	al.,	(2014)	evaluated	five	crash	types:	Total,	Injury	and	fatal,	Rear	end,	Type	1	frontal	
impact,	and	Type	2	frontal	impact	crashes.			Frontal	impact	crashes	(type	1)	included	the	following	crash	
types:	

• Left	turn	same	roadway	
• Left	turn	different	roadway	
• Angle	

Frontal	impact	crashes	(type	2)	included	the	following	crash	types:	
• Left	turn	same	roadway	
• Left	turn	different	roadway	
• Angle	
• Right	turn	same	roadway	
• Right	turn	different	roadway	
• Sideswipe	opposite	direction	
• Head-on	

Crash	Modification	Factors	
Following	is	a	summary	of	the	crash	modification	factors	that	were	estimated	based	on	the	117	
intersections	that	were	included	in	the	evaluation	(further	information	about	these	CMFs	including	
CMFs	for	intersections	without	and	without	left	turn	lanes	is	available	in	Srinivasan	et	al,	2014):	

• Total	crashes:	CMF	(S.E.)	=	0.590	(0.019)	
• Injury	and	fatal	crashes:	CMF	(S.E.)	=	0.541	(0.027)	
• Rear	end	crashes:	CMF	(S.E.)	=	0.906	(0.052)	
• Frontal	impacts	crashes	(Type	1):	CMF	(S.E.)	=	0.401	(0.020)	
• Frontal	impact	crashes	(Type	2):	CMF	(S.E.)	=	0.440	(0.020)	
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Table	1:	Summary	statistics	for	3	leg	treatment	sites	(36	intersections)	
Variable	 Signalization	without	

addition	of	left	turn	lanes																			
(17	sites)	

Signalization	with	addition	
of	at	least	one	left	turn	
lane				(19	sites)	

Min.	 Max.	 Mean	 Min.	 Max.	 Mean	
Years	before	 5	 5	 5	 5	 5	 5	
Years	after	 4	 5	 4.88	 3	 5	 4.79	
Total	Crashes/site-year	before	 0	 4.4	 2.38	 0.6	 10.4	 3.94	
Total	Crashes/site-year	after	 0	 5.4	 1.86	 0.6	 7.4	 2.55	
Injury	&	Fatal	Crashes/site-year	before	(KABC)	 0	 2.2	 1.05	 0.2	 4.2	 1.8	
Injury	&	Fatal	Crashes/site-year	after	(KABC)	 0	 1.8	 0.76	 0	 2.6	 0.81	
Rear	End	Crashes/site-year	before	 0	 1.4	 0.64	 0	 5	 1.61	
Rear	End	Crashes/site-year	after	 0	 3.2	 1.01	 0.2	 3.2	 1.16	
Type	1	Frontal	Impact	Crashes/site-year	before	 0	 1.8	 1.01	 0.4	 5.8	 1.65	
Type	1	Frontal	Impact	Crashes/site-year	after	 0	 1.2	 0.43	 0	 3.8	 0.82	
Type	2	Frontal	Impact	Crashes/site-year	before	 0	 2	 1.12	 0.6	 6	 1.77	
Type	2	Frontal	Impact	Crashes/site-year	after	 0	 1.2	 0.51	 0.2	 4.4	 0.98	
Major	road	AADT	before	 3475	 14539	 8150	 2981	 15107	 9518	
Major	road	AADT	after	 3907	 18025	 8307	 3870	 18248	 10820	
Minor	road	AADT	before	 986	 5871	 3671	 1852	 13880	 5686	
Minor	road	AADT	after	 972	 6829	 3777	 3104	 13880	 6255	
Intersection	AADT	before	 6130	 16336	 11821	 8341	 25421	 15204	
Intersection	AADT	after	 6110	 20247	 12084	 8880	 32129	 17075	
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Table	2:	Summary	statistics	for	4	leg	treatment	sites	(81	intersections)	
Variable	 Signalization	without	

addition	of	left	turn	lanes																			
(33	sites)	

Signalization	with	addition	
of	at	least	one	left	turn	

lane				(48	sites)	
Min.	 Max.	 Mean	 Min.	 Max.	 Mean	

Years	before	 2	 5	 4.79	 4	 5	 4.96	
Years	after	 2	 5	 4.76	 1	 5	 4.75	
Total	Crashes/site-year	before	 0.2	 8.6	 4.41	 0	 10.2	 4.6	
Total	Crashes/site-year	after	 0	 6.6	 2.64	 0	 7.4	 2.78	
Injury	&	Fatal	Crashes/site-year	before	(KABC)	 0	 4.6	 2.33	 0	 6	 2.42	
Injury	&	Fatal	Crashes/site-year	after	(KABC)	 0	 2.6	 1.19	 0	 4	 1.13	
Rear	End	Crashes/site-year	before	 0	 2	 0.59	 0	 3	 0.95	
Rear	End	Crashes/site-year	after	 0	 2.4	 0.93	 0	 4	 1	
Type	1	Frontal	Impact	Crashes/site-year	before	 0.2	 7.2	 3.22	 0	 8.2	 3.07	
Type	1	Frontal	Impact	Crashes/site-year	after	 0	 2.8	 1.25	 0	 4.6	 1.13	
Type	2	Frontal	Impact	Crashes/site-year	before	 0.2	 7.4	 3.35	 0	 8.2	 3.2	
Type	2	Frontal	Impact	Crashes/site-year	after	 0	 3	 1.32	 0	 5	 1.38	
Major	road	AADT	before	 2480	 14805	 5947	 1360	 14309	 7869	
Major	road	AADT	after	 2680	 17566	 6729	 1467	 15500	 9241	
Minor	road	AADT	before	 746	 5463	 2823	 1036	 8884	 3633	
Minor	road	AADT	after	 1014	 5803	 3295	 1063	 8537	 4360	
Intersection	AADT	before	 4624	 17412	 8770	 5325	 18906	 11502	
Intersection	AADT	after	 4394	 19573	 10023	 5770	 22392	 13601	
	

CRASH	MODIFICATION	FUNCTIONS	
The	models	for	the	CMFunctions	were	estimated	using	PROC	GLIMMIX	in	SAS	for	total	and	injury	and	
fatal	crashes.		Since	model	form	2	is	lognormal	and	model	form	3	is	negative	binomial	with	a	log-link,	the	
predicted	value	from	the	model	forms	2	and	3	can	be	obtained	by	taking	the	exponent	of	the	results	
provided	by	SAS,	i.e.,	the	predicted	value	is	the	following:	

.....}*exp{ 44332211 +++++ XXXX ββββα ,		

where	α is	the	intercept,	the	Xs	are	the	independent	variables,	and	the β s	are	the	coefficients	of	the	

independent	variables.			

On	the	other	hand,	the	predicted	value	from	model	form	1	is	just	the	following:		

( .....* 44332211 +++++ XXXX ββββα ).	



 

Raghavan	Srinivasan	and	Bo	Lan   12 

Aggregation	
In	order	to	estimate	CMFunctions	using	model	forms	1	and	2,	the	data	from	the	results	of	the	before-
after	EB	method	were	aggregated.		As	mentioned	earlier,	the	intent	of	the	aggregation	was	to	have	a	
sufficient	sample	of	sites	in	each	group	so	that	a	reliable	CMF	and	the	standard	error	of	the	CMF	can	be	
estimated	for	each	group.		Different	options	were	explored.		Starting	with	the	117	treatment	sites,	the	
final	grouping	was	based	on	the	following	variables:	

• Major	road	AADT	before	treatment	(3	categories):	0	–	5,000,	5,001	–	10,000,	>10,000	
• Speed	limit	on	the	major	road	(2	categories):	Less	than	or	equal	to	50	mph,	>	50	mph	
• Number	of	legs	(2	categories):	3	leg	and	4	leg	
• Left	turn	added	during	treatment	(2	categories):	Yes,	No	

With	this	grouping,	there	is	a	possibility	of	a	maximum	of	24	groups	(i.e.,	3	X	2	X	2	X	2).		However,	two	of	
these	groups	did	not	have	any	sites.		So,	the	information	from	the	117	treatment	sites	was	collapsed	
into	22	groups.	

Measures	of	Comparison	
In	order	to	compare	the	performance	of	the	different	model	forms,	various	performance	measures	(or	
goodness	of	fit)	were	investigated,	including	log-likelihood,	Akaike’s	information	criterion	(AIC),	and	
Bayesian	information	Criterion	(BIC).		However,	since	the	model	forms	are	different,	it	was	unclear	if	
these	GOF	based	on	the	likelihood	were	the	most	appropriate.		Hence,	other	measures	were	considered	
including	mean	absolute	deviation	(MAD)	and	mean	square	error	(MSE).		In	addition,	there	was	a	need	
to	determine	how	the	well	a	CMFunction	without	covariates	(i.e.,	with	just	an	intercept	term)	predicted	
the	CMF	estimated	using	the	EB	method;	this	could	be	called	as	boundary	condition	check.	

Results	
Results	are	provided	below	for	both	the	boundary	condition	check	and	multivariable	CMFunctions	to	
investigate	the	effect	of	site	characteristics	on	the	CMF.	

Boundary	condition	check	based	on	intercept	only	models	
The	results	for	the	boundary	condition	check	(based	on	a	CMFunction	with	just	an	intercept	term)	are	
presented	in	Table	3	along	with	the	estimated	CMF	from	EB	before-after	evaluation	for	total	and	injury	
and	fatal	crashes.		Ideally,	the	predicted	CMF	should	be	very	close	to	the	estimated	CMF	from	the	EB	
before-after	evaluation	(the	estimated	CMF	was	0.590	for	total	crashes	and	0.541	for	injury	and	fatal	
crashes).		The	absolute	value	of	the	difference	between	the	predicted	CMF	and	estimated	CMF	is	also	
provided.		

Based	on	Table	3,	it	is	clear	that	for	total	crashes,	model	form	2	provides	the	CMF	predictions	that	are	
closest	to	the	actual	CMF	value.		This	is	followed	by	model	form	3	and	then	model	form	1.		The	
prediction	from	model	form	3	for	the	disaggregate	data	is	quite	close	to	the	prediction	from	model	
form2.		For	injury	and	fatal	crashes,	the	prediction	from	model	form	2	for	weighted	regression	and	the	
prediction	from	model	form	3	for	the	disaggregate	data	are	closest	to	the	actual	CMF	value.		For	both	
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crash	types,	the	prediction	from	model	form	3	for	the	grouped	data	performs	better	than	the	
predictions	from	model	form	1.	

Multivariable	CMFunctions	
Following	the	review	of	the	boundary	condition,	multivariable	CMFunctions	were	estimated	for	these	
different	model	forms.			The	following	independent	variables	(site	characteristics)	were	included	in	the	
models.			

• Average	major	road	AADT	in	the	before	period	
• Average	minor	road	AADT	in	the	before	period	
• Average	total	intersection	AADT	in	the	before	period	
• Average	EB	estimate	of	the	expected	crashes	in	the	before	period	
• Number	legs	(3	legs	versus	4	legs)	
• Whether	at	least	one	left	turn	lane	was	added	during	signalization	(Yes	or	No)	
• Speed	limit	on	the	major	road	(Less	than	or	equal	to	50	mph,	>	50	mph)	

Table	3:	CMF	predictions	based	on	intercept	only	CMFunction	
Actual	and	
Predicted	CMFs	

Model	
Form	

Aggregate	or	
Disaggregate;	

Weighted/Unweighted;	
Observations	

Total	Crashes	 Injury	and	Fatal	
Crashes	

CMF	
value	

Difference	
from	actual	

CMF	
(absolute	
value)	

CMF	
value	

Difference	
from	actual	

CMF	
(absolute	
value)	

Actual	CMF	from	
EB	before-after	
evaluation	

	 	 0.590	 ----	 0.541	 ----	

Predicted	CMF	 Model	
Form	1	

Aggregated;	
Unweighted;	

22	observations	

0.615	 0.025	 0.625	 0.084	

Predicted	CMF	 Model	
Form	1	

Aggregated;	
Weighted;	

22	observations	

0.539	 0.051	 0.464	 0.077	

Predicted	CMF	 Model	
Form	2	

Aggregated;	
Unweighted;	

22	observations	

0.587	 0.003	 0.573	 0.032	

Predicted	CMF	 Model	
Form	2	

Aggregated;	
Weighted;	

22	observations	

0.595	 0.005	 0.552	 0.011	

Predicted	CMF	 Model	
Form	3	

Aggregated;	
Unweighted;	

22	observations	

0.612	 0.022	 0.581	 0.040	

Predicted	CMF	 Model	
Form	3	

Disaggregated;	
Unweighted;	

117	observations	

0.598	 0.008	 0.529	 0.012	
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For	the	models	with	the	aggregated	data,	the	AADT	and	the	EB	estimate	values	were	averaged	for	a	
particular	group.		In	the	model	development,	the	independent	variables	that	were	not	statistically	
significant	at	the	0.05	level	were	removed	in	a	stepwise	manner.		The	final	model	only	included	
independent	variables	that	were	statistically	significant	at	the	0.05	level.		The	results	of	the	grouped	
models	(for	all	three	model	forms)	are	presented	separately	from	the	results	of	the	disaggregate	data	
(just	for	model	form	3),	since	the	GOF	statistics	such	as	MAD	and	MSE	cannot	be	compared	for	
aggregate	and	disaggregate	data.			
	

Results	for	CMFunctions	from	aggregate	data	
Table	4	shows	the	CMFunctions	estimated	using	aggregate	data	for	total	crashes	and	Table	5	shows	the	
CMFunctions	estimated	using	aggregate	data	for	injury	and	fatal	crashes.		The	parameter	estimates	are	
shown	along	with	the	standard	errors	and	GOF	statistics.		For	the	total	crash	CMFunctions,	the	MSE	
values	are	very	close	to	each	other,	but	the	MAD	values	are	slightly	better	for	model	form	1.		The	GOF	
for	model	form	3	and	model	form	2	with	weighted	regression	are	very	close	to	each	other.		In	the	case	
of	the	injury	and	fatal	crashes,	model	form	3	and	model	form	2	with	weighted	regression	are	clearly	
better	than	the	other	model	forms.		This	is	an	important	finding	since	not	all	crashes	result	in	an	injury	
or	fatality.		In	this	data	set,	injury	and	fatal	crashes	represent	about	50%	of	total	crashes	before	the	
intersections	were	signalized	(see	Tables	1	and	2).		This	finding	along	with	the	results	from	Table	3	could	
imply	that	when	CMFunctions	are	estimated	for	crash	types	that	are	less	frequent,	model	forms	2	and	3	
may	be	more	reliable.		Overall,	the	results	indicate	that	the	following:	

• CMFs	seem	to	increase	with	increase	in	AADT	values	
• CMFs	are	higher	for	intersections	where	left	turn	lanes	were	not	added	(this	is	consistent	with	

the	results	reported	in	Srinivasan	et	al.,	2014)	
• CMFs	are	higher	for	intersections	where	the	major	speed	limit	is	higher	than	50	mph	

More	importantly,	model	form	3	seems	a	reasonable	substitute	for	the	traditional	model	forms	1	and	2.	

Results	for	CMFunctions	from	disaggregate	data	
Table	6	shows	the	results	for	ungrouped	data	based	on	model	form	3.		Unlike	the	models	based	on	
aggregated	data,	the	number	of	legs	is	statistically	significant	for	the	total	crash	models,	and	implies	that	
the	CMF	is	lower	at	3	leg	intersections	(i.e.,	the	treatment	is	more	effective	at	3	leg	intersections	
compared	to	4	leg	intersections).		In	addition,	an	increase	in	EB	expected	crashes	per	year	in	the	before	
period	is	associated	with	a	decrease	in	the	CMF,	i.e.,	the	treatment	is	more	effective	at	sites	with	higher	
expected	crashes	per	year	in	the	before	period.		These	two	variables	(number	of	legs	and	expected	
crashes	in	the	before	period)	were	not	significant	in	any	of	the	models	using	the	grouped	data.		This	
indicates	the	value	in	using	the	disaggregate	data	in	estimating	the	CMFunctions.		Model	form	3	allows	
estimation	of	CMFunctions	with	disaggregate	data.	
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Table	4:	CMFunctions	for	Total	Crashes	(Aggregated	Data)	
Variable	 Model	1	

(unweighted)	
Normal	

Model	1	
(weighted)	
Normal	

Model	2	
(unweighted)	
Lognormal	

Model	2	
(weighted)	
Lognormal	

Model	3	
Negative	
binomial	

	 Estimate	
(S.E.)	

Estimate	
(S.E.)	

Estimate	
(S.E.)	

Estimate	
(S.E.)	

Estimate	
(S.E.)	

Intercept	 -2.9040	
(0.9603)	

-1.2934	
(0.5068)	

-6.2440	
(1.4114)	

-4.3143	
(0.9852)	

-4.4405	
(0.8815)	

ln(Major	road	
AADT)	

	 0.1950	
(0.0560)	

	 0.3978	
(0.1083)	

0.4121	
(0.0969)	

Minor	road	
AADT	

	 	 	 	 	

ln(Intersection	
AADT)	

0.3597	
(0.1017)	

	 0.5840	
(0.1494)	

	 	

Legs	=	3	 	 	 	 	 	
Legs	=	4	
(reference	
level)	

	 	 	 	 	

No	turn	lane	
added	

0.1871	
(0.0660)	

0.1472	
(0.0517)	

0.3146	
(0.0971)	

0.2802	
(0.0875)	

0.2755	
(0.0844)	

Turn	lane	
added	
(reference	
level)	

	 	 	 	 	

Speed	limit	>	
50	mph	

0.1351	
(0.0647)	

0.1377	
(0.0473)	

0.2018	
(0.0951)	

0.2558	
(0.0833)	

0.2469	
(0.0828)	

Speed	limit	<	
50	mph	
(reference	
level)	

	 	 	 	 	

k/scale	 0.0227	 1.5489	 0.0491	 1.5596	 0.0170	
MAD	 0.105	 0.105	 0.106	 0.110	 0.109	
MSE	 0.019	 0.020	 0.019	 0.020	 0.020	
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Table	5:	CMFunctions	for	Injury	and	Fatal	Crashes	(Aggregated	Data)	
Variable	 Model	1	

(unweighted)	
Normal	

Model	1	
(weighted)	
Normal	

Model	2	
(unweighted)	
Lognormal	

Model	2	
(weighted)	
Lognormal	

Model	3	
Negative	
binomial	

	 Estimate	
(S.E.)	

Estimate	
(S.E.)	

Estimate	
(S.E.)	

Estimate	
(S.E.)	

Estimate	
(S.E.)	

Intercept	 	 	 	 -5.6344	
(2.1442)	

-5.9765	
(2.1284)	

ln(Major	road	
AADT)	

0.0705	
(0.0062)	

0.0525	
(0.0039)	

	 	 	

Minor	road	
AADT	

	 	 	 	 	

ln(Intersection	
AADT)	

	 	 -0.0593	
(0.0101)	

0.5044	
(0.2263)	

0.5531	
(0.2255)	

Legs	=	3	 	 	 	 	 	
Legs	=	4	
(reference	
level)	

	 	 	 	 	

No	turn	lane	
added	

	 	 	 0.4473	
(0.1353)	

0.4914	
(0.1422)	

Turn	lane	
added	
(reference	
level)	

	 	 	 	 	

Speed	limit	>	
50	mph	

	 	 	 0.2652	
(0.1255)	

	

Speed	limit	<	
50	mph	
(reference	
level)	

	 	 	 	 	

k/scale	 0.0677	 2.1076	 0.1939	 1.5709	 0.0458	
MAD	 0.211	 0.233	 0.214	 0.153	 0.152	
MSE	 0.065	 0.090	 0.072	 0.049	 0.050	
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Table	6:	CMFunctions	for	disaggregate	data	(model	form	3)	
Variable	 Total	

Crashes	
Injury	and	Fatal	
Crashes	

	 Estimate	
(S.E.)	

Estimate	(S.E.)	

Intercept	 -4.1053	
(0.9731)	

-3.2146	
(1.1656)	

ln(Major	road	
AADT)	

0.4059	
(0.1092)	

0.2875	(0.1276)	

Minor	road	
AADT/1000	

0.0722	
(0.0246)	

	

ln(Intersection	
AADT)	

	 	

EB	expected	
crashes	per	year	

-0.1143	 -0.1445	
(0.0524)	

Legs	=	3	 -0.2813	
(0.1205)	

	

Legs	=	4	
(reference	level)	

	 	

No	turn	lane	
added	

0.2543	
(0.0940)	

0.3447	(0.1145)	

Turn	lane	added	
(reference	level)	

	 	

Speed	limit	>	50	
mph	

0.2238	
(0.0878)	

0.2923	(0.1110)	

Speed	limit	<	50	
mph	(reference	
level)	

	 	

k	 0.1245	 0.1195	
MAD	 0.244	 0.291	
MSE	 0.114	 0.154	
	

SUMMARY	AND	CONCLUSIONS	
The	main	goal	of	this	study	was	to	investigate	different	model	forms	for	estimating	CMFunctions	using	
the	results	from	a	before-after	EB	evaluation.		Three	different	model	forms	were	explored	including	two	
traditional	approaches,	normal	regression	(model	form	1)	and	lognormal	regression	(model	form	2),	and	
a	new	negative	binomial	regression	approach	(model	form	3).		With	the	traditional	approaches,	the	
dependent	variable	is	the	CMF	for	a	particular	site	(or	group	of	sites),	and	sites	are	usually	grouped	(or	
aggregated)	in	order	to	obtain	a	stable	estimate	of	the	CMF	and	the	standard	error	of	the	CMF.	With	the	
new	negative	binomial	regression	approach,	the	numerator	of	the	CMF	is	used	as	the	dependent	
variable	and	the	denominator	of	the	CMF	is	used	as	an	offset.		The	negative	binomial	regression	
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approach	does	not	require	the	aggregating	of	data,	and	could	provide	more	insights	that	may	be	lost	
due	to	the	aggregation.			

The	project	team	sought	data	from	multiple	states	in	order	to	compare	the	performance	of	these	
different	types	of	CMFunctions.		Finally,	data	from	the	results	of	a	before-after	evaluation	conducted	for	
North	Carolina	Department	of	Transportation	were	used	for	comparing	the	results	from	the	three	
different	approaches	for	estimating	CMFunctions.		The	treatment	was	the	implementation	of	traffic	
signals	at	intersections	that	were	controlled	by	stop	signs	on	the	minor	roads.			

First,	the	data	were	aggregated	and	all	CMFunctions	were	estimated	using	the	three	model	forms.		For	
the	first	two	model	forms,	CMFunctions	were	estimated	with	and	without	weights.		With	the	aggregated	
data,	the	results	from	model	form	3	compare	quite	favorably	with	that	of	the	traditional	model	forms	1	
and	2.		Then,	CMFunctions	based	on	model	form	3	were	estimated	using	the	original	results	from	the	
before-after	evaluation	(i.e.,	without	aggregation).		The	models	using	disaggregate	data	included	
independent	variables	that	were	not	significant	in	the	models	based	on	the	aggregated	data,	indicating	
the	value	of	using	model	form	3	to	estimate	CMFunctions	using	disaggregate	data.	
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