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EXECUTIVE	SUMMARY	
 

A crash modification factor (CMF) is an estimate of the change in crashes expected after 
implementation of a countermeasure.  Practitioners can use the CMF in quantifying safety in 
many ways including as part of the roadway management process, roadway safety audits, 
alternatives development and analysis, and design decisions and exceptions (FHWA, 2014).     
 
The two common methods for estimating CMFs are: cross-sectional and the empirical Bayes 
(EB) before-after. The EB before-after method has now been accepted as one way of addressing 
the potential bias due to RTM.  However, there are some treatments for which before-after 
studies may not be possible due to unavailability of data from the before period.  In those cases, 
researchers rely on cross-sectional studies to develop CMFs.  One of the primary challenges of 
cross-sectional studies is confounding which is sometimes due to systematic differences between 
the reference and treatment groups. In the presence of uncontrolled confounding, any obtained 
CMFs from the treatment group cannot be attributed solely to a causal effect of the 
countermeasures, and thus the estimated CMFs may be biased and unreliable.   
 
Many statistical approaches can be used to remove the confounding effects of such factors if they 
are measured in the data.  One such method is propensity score (PS) methods along with cross-
sectional regression models. The propensity score is the probability of being assigned to the 
treatment group given the observed covariates. Though the propensity score methods are widely 
used in epidemiology and other studies, there are only a few studies using the propensity score 
methods in transportation safety.  
 
The intent of this study is to evaluate and compare the performance of cross-sectional regression 
models that make use of propensity scores with the results from the EB and traditional cross-
sectional methods.  The cross-sectional method with various propensity score methods were 
explored in this study.  These methods were evaluated and compared with the traditional cross-
sectional and the EB methods using two carefully selected simulated datasets. The simulated data 
sets were designed such that the characteristics of the treated and reference sites were quite 
different, and the CMF estimates from the EB method were statistically different from the true 
CMF.  The intent was to determine if the PS methods would outperform the EB method under 
these specific circumstances. 
 
The explored propensity score methods including weighting, covariate adjustment, and the match 
methods.  The weighting option incudes weighting by Inverse Probability of Treatment 
Weighting (IPTW), Stabilized Inverse Probability of Treatment Weighting (SIPTW), and 
Standardized Mortality Ratio Weighting (SMRW). The covariate adjustment options are 
propensity score, logit of propensity score (LPS), IPTW, SIPTW, and SMRW.  Note that the last 
four covariate adjustment options have not been found previous studies.  Furthermore, neither 
the weighting method nor the covariate adjustment method has been applied, evaluated, or 
explored in road safety studies. 
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It was found the optimal propensity score distance (PSD) matching with max. variable ratio of 5 
and the nearest neighbor (NN) Mahalanobis distance (MD) matching with 1 replacement correctly 
identified the true effects, but the former has most number of the matched control sites and 
provides much better results. The important findings from this study are as following: 

1. The NN MD matching with 1 replacement and the optimal matching by propensity 
score correctly identify the true effects. 

2. The optimal PSD matching with max variable ratio of 5 has the most number of 
matched control sites and provide the best CMF estimates 

3. The NN PSD matching with 5 replacements has the least number of matched 
control sites and is the worst method for CMF estimates 

4. The optimal MD matching with max variable ratio of 5 does not perform as well as 
the NN MD matching with 5 replacements. 

5. The mixed-effects has the better results than the NB models in terms of better 
estimate for the mean values and smaller stand errors. 

6. Weighting by IPTW and SMRW as well as covariate adjustment by LPS, IPTW, 
and SIPTW generated similar or better CMFs than the EB method. 

 
Based on the findings, we recommend the optimal PSD matching for the CMFs evaluation.    
However, we cannot conclude that this method will always outer perform the EB method. 
The weighting by IPTW and SMRW as well as the covariate adjustment by LPS, IPTW, 
and SIPTW are also suggested for further exploration using different simulated datasets. 
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1	BACKGROUND	
 
A crash modification factor (CMF) is an estimate of the change in crashes expected after 
implementation of a countermeasure.  Practitioners can use the CMF in quantifying safety in 
many ways including as part of the roadway management process, roadway safety audits, 
alternatives development and analysis, and design decisions and exceptions (FHWA, 2014).  
There are many ways to estimate the CMF associated with an engineering improvement.  The 
methods for estimating CMFs can be divided into two broad categories: cross-sectional and 
before-after.  Before-after studies include “all techniques by which one may study the safety 
effect of some change that has been implemented on a group of entities (road sections, 
intersections, drivers, vehicles, neighborhoods, etc.)” (Hauer, 1997, p. 2). On the other hand, 
cross-sectional studies include those where “one is comparing the safety of one group of entities 
having some common feature (say, STOP controlled intersections) to the safety of a different 
group of entities not having that feature (say, YIELD controlled intersections), in order to assess 
the safety effect of that feature (STOP versus YIELD signs)” (Hauer, 1997, p. 2, 3). 
Many safety researchers feel that CMFs developed using cross-sectional studies may not always 
be reliable because cross-sectional models rarely represent causal relationships.  The issues 
associated with the CMFs derived from cross-sectional models are discussed in some detail in 
Gross et al., (2010) and Carter et al., (2012).   
 
There is some consensus in the safety research community that properly designed before-after 
studies provide more reliable estimates of CMFs. In before-after studies, the CMF is estimated 
based on two parameters: (1) crashes that occurred at the treated sites after the treatment is 
implemented, and (2) an estimate of the crashes that would have occurred during the same ‘after’ 
period had the treatment not been implemented, and the variance of this estimate.  Often, sites 
are not selected for treatment at random; practitioners usually select high crash locations for 
treatment.  This non-random selection can potentially lead to bias due to regression to the mean 
(RTM).  Using the empirical Bayes before-after method has now been accepted as one way of 
addressing the potential bias due to RTM.  However, there are some treatments for which before-
after studies may not be possible due to unavailability of data from the before or after period.  In 
those cases, researchers rely on cross-sectional studies to develop CMFs (Miaou and Lum, 1993; 
Persaud et al., 2009; Donnell et al., 2010; Donnell and Gross, 2011).   
 
One of the primary challenges of cross-sectional studies is confounding which is sometimes due 
to systematic differences between the reference and treatment groups. In the presence of 
uncontrolled confounding, any obtained CMFs from the treatment group cannot be attributed 
solely to a causal effect of the countermeasures, and thus the estimated CMFs may be biased and 
unreliable.  Confounding in road safety studies can arise from a variety of different reasons.  The 
most common form of confounding arises from treatments based on some risk factors. The 
distributions of the risk factors in the treatment group may be completely different from those in 
the reference group. The observed difference will then be the result of both confounding and 
treatment choice, making it difficult to delineate the true effect of the treatment. The CMFs 
estimated by traditional cross-sectional methods could then be biased and unreliable.    
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Many statistical approaches can be used to remove the confounding effects of such factors if they 
are measured in the data.  One such method is propensity score (PS) methods along with cross-
sectional regression models (Austin, P. C., 2011).   The propensity score is the probability of 
being assigned to the treatment group given the observed covariates.  A propensity score can be 
easily estimated by logistic regression. The propensity score allows one to design and analyze an 
observational (nonrandomized) study so that it mimics some of the particular characteristics of a 
randomized controlled trial. It should be noted that the propensity score is a balancing score: 
conditional on the propensity score, the distribution of observed covariates will generally be 
similar between treated and untreated subjects. In other words, propensity score can be used to 
balance the measured covariates between the treatment and reference groups and thus overcome 
the confounding issue associated with traditional cross-sectional method.  In fact, propensity 
score methods are the most popular causal inference methods for observational studies in 
epidemiology and etiology fields (Rosenbaum and Rubin, 1983). 
 
There are four different propensity score methods used for removing the effects of confounding 
when estimating the CMFs: matching on the propensity score, stratification on the propensity 
score, inverse probability of treatment weighting using the propensity score, and covariate 
adjustment using the propensity score. Furthermore, there are a few options on how to use each 
of the above four propensity score methods.  
 
Given the advantages of the propensity score methods, recently, researchers have started 
applying the propensity score approaches in connection with cross-sectional regression models 
for improving the reliability of CMFs that are estimated from cross-sectional studies. The next 
section will list a few studies using the propensity score methods in road safety study. 

2	SUMMARY	OF	RECENT	STUDIES	USING	THE	PROPENSITY	SCORE	
METHODS	

 
Though the propensity score methods are widely used in epidemiology and other studies, there 
are only a few studies using the propensity score methods in CMF derivations in transportation 
safety. Below are some of the studies found in previous transportation safety studies. 
 
Donnell et al. explored the propensity score method using a dataset that was part of a study on 
the safety evaluation of shoulder rumble strips (SRS) and centerline rumble strips (CLRS) 
applications (Donnell et al, 2017).   The data set included 334 treatment sites as well as 13,286 
reference sites. First, the study compared the CMFs for the five crash types including the total, 
injury, runoff road, head-on, and the sideswipe-opposite direction crashes obtained from the EB 
and the three propensity score matching methods, where the reference sites were matched with 
treatment sites by propensity score 1-1 matching, propensity score 5-1 matching, and propensity 
score 10-1 matching with replacement.  For all crash types, the 95% confidence intervals of the 
CMFs from all the four methods include the value of 1, indicating there is no significant 
treatment effects for the two treatments.  Additionally, it was found the variances from the 
propensity score methods are much bigger than those from the EB method except for the total 
crashes. They further compared the EB and the same propensity score matching methods by 
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adding a simulated covariate and a designated CMF to the original data set.  They concluded the 
propensity score matching method is better than the EB method in that the CMFs from the 
propensity score methods are closer to the predefined true CMF.  This study did not evaluate the 
traditional cross-sectional method.  
 
Sasidharan and Donnell (2013) applied the propensity score method to estimate effectiveness of 
installation of lighting at the intersections.   6464 intersections were available for analysis and 
about 42% of the intersections contained some form of roadway lighting.  Four years (1999–
2002) of crash and corresponding roadway inventory data were used in the analysis.  The nearest 
neighbor (NN) propensity score matching, Mahalanobis distance (MD) matching, and 
stratification of propensity score with regression were used to estimate the CMFs. The results 
from the three methods indicate that fixed roadway lighting reduces expected nighttime crashes, 
but does not significantly reduce daytime crashes.   
 
Wood et al (wood et al, 2015) used the propensity score methods to estimate the safety effects of 
lane widths on urban streets in Nebraska. Matching was performed using both Nearest Neighbor 
and Mahalanobis matching techniques.  The database consisted of ten years’ of crash data 
(2003– 2012) at mid-block segments on urban streets in four Nebraska cities, totaling 18,227 
observations (segment-years). CMFs for the target crash types (sideswipe same direction and 
sideswipe opposite-direction) were estimated using mixed-effects negative binomial or poisson 
regression with the matched data. They concluded that CMFs for target crash types (sideswipe 
same direction and sideswipe opposite-direction) were consistent with the values currently used 
in the Highway Safety Manual (HSM). 
 
Wood and Donnell (Wood and Donnell, 2016) evaluated the CMFs of the continuous green T 
(CGT) intersections using both the nearest neighbor and genetic matching methods.  The 
matching criteria was Mahalanobis distance.  The crash data from 2008 to 2012 in Florida (FL) 
and from 2009 to 2013 in South Carolina (SC) were used for the analysis. The data included 30 
CGT and 38 comparison sites from Florida and 16 CGT and 21 reference sites from South 
Carolina.  The studied crash types include total, fatal and injury, and target crash (rear-end, 
angle, and sideswipe).  No significant treatment effects were identified for all the studied crash 
types. 
 
A comparison CMFs study of EB, propensity score, and traditional cross-sectional methods were 
conducted for total and run-off-road crashes by Wood et al (Wood et al, 2015). The sample was 
small in that there were only 57 treatment sites and 147 reference sites.  Data from 1999 to 2008 
obtained from Georgia were used to conduct the study.  The data set consists of 57 rural road 
segments that received a Safety Edge treatment and 147 untreated segments.  Years 2006-2008 
were the after periods for the treatment group and they were used for the cross-sectional studies 
with or without propensity score matching while the whole period (1999-2008) were used for the 
EB comparison study. The caliper-based 1:1 nearest neighbor matching without replacement 
method (Austin 2011) were used. Their results show that the cross-sectional and propensity score 
based methods yielded similar CMFs when compared to the EB methods. However, the EB 
estimates had smaller standard errors than either of the traditional or propensity score based 
cross-sectional methods.  Additionally, since the estimated CMFs were very close to 1, it is 
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unclear if these findings are transferable to situations where the CMFs are different from 1.0. It is 
likely that depending on a particular dataset, EB before-after methods may underperform or 
perform better than propensity score methods.    
 

2.1	Study	Purpose	
 
The intent of this study is to evaluate and compare the performance of cross-sectional regression 
models that make use of propensity scores with the results from the EB and traditional cross-
sectional methods.  To this end, a careful study design was performed, and various propensity 
score related methods were explored.  The authors explored the possibility of using real data to 
compare the different methods.  However, as evident from Wood et al (2015), the results may 
depend on a particular data set.  Hence, the decision was made to use simulated date.  The details 
are described in the later sections.  Note that the terms, reference sites, comparison sites, or 
control sites are used interchangeably throughout the report. 
 
The report is organized into eight sections. The first part describes the background of CMFs 
studies in road safety and the need for a modified cross-sectional study.  The second section lists 
the recent studies using the propensity score methods in CMFs evaluations and provides the 
purpose of this study.   The third section introduces the different statistical methods that were 
evaluated in this study. Section 4 describes the study design.  The next section provides 
information on the approach used in simulation.  Section 6 provides the results from the study. 
Section 7 provides the discussion and conclusions. 
	

3	METHODS	EXPLORED	
	

The two most popular methods for the CMFs evaluations, which are traditional cross-sectional 
(CS) models and the EB method, were used to compare the performance of the cross-sectional 
models that utilize the propensity score methods.  The three methods are described below: 
 

3.1	The	EB	method	
In the EB approach (Hauer, 1997, Hauer et al., 2002), the change in safety for a given crash type 
at a location is given by:  
 
 λ - π  (1) 
 
where λ is the expected number of crashes that would have occurred in the after period without 
treatment and π is the number of reported crashes in the after period.  
 
In estimating λ, the effects of regression to the mean and changes in traffic volume are explicitly 
accounted for using safety performance functions (SPFs) relating crashes to traffic flow and other 
relevant factors (SPFs are typically estimated using data from a reference group of untreated sites). 
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Annual SPF multipliers were calibrated to account for the temporal effects due to change in 
weather, demography, crash reporting and so on.  
 
In the EB procedure, the SPF is used to first estimate the number of crashes that would be expected 
in each year of the before period at locations with traffic volumes and other characteristics similar 
to the one being analyzed. The sum of these annual SPF estimates (P) is then combined with the 
count of crashes (x) in the before period at a treatment site to obtain an estimate of the expected 
number of crashes (m) before treatment. This estimate of m is: 
 
 m = w1(x) + w2(P), (2) 
 
where the weights w1 and w2 are estimated from the mean and variance of the SPF estimate as: 
 
 w1 = P/(P + 1/k)  (3) 
 
 w2 = 1/k(P + 1/k),  (4) 
 
where k is a constant for a given model and is estimated from the SPF calibration process with the 
use of a maximum likelihood procedure. (In that process, a negative binomial distributed error 
structure is assumed with k being the dispersion parameter of this distribution.)   
 
A factor is then applied to m to account for the length of the after period and differences in traffic 
volumes between the before and after periods. This factor is the sum of the annual SPF predictions 
for the after period divided by P, the sum of these predictions for the before period. The result, 
after applying this factor, is an estimate of λ.  The procedure also produces an estimate of the 
variance of λ, the expected number of crashes that would have occurred in the after period without 
treatment. 
 
The estimate of λ is then summed over all sites in a treatment group of interest (to obtain λsum) and 
compared with the count of crashes during the after period in that group (πsum). The variance of λ 
is also summed over all sections in the treatment group. 
 
The CMF (θ) is estimated as: 
 
 θ = (πsum/λsum) / {1 + [Var(λsum)/λsum

2]}. (5) 

The standard deviation of θ  is given by: 

 Stddev(θ) = [θ2{[Var(πsum)/πsum
2] + [Var(λsum)/λsum

2]} / [1 + Var(λsum)/λsum
2]2]0.5 (6) 

Generalized linear modeling is typically used to estimate the required reference group SPF using 
negative binomial regression.  The negative binomial dispersion parameter, k, is also estimated in 
this process.  
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3.2	Cross-Sectional	Modeling	
Similar to the SPF developments in the EB method, crashes are normally assumed to follow a 
Negative Binominal (NB) distribution to address the overdispersion nature in the crash counts.  
In this approach the treatment group and the untreated group are pooled and a dummy variable 
indicating reference/treatment group is included in the models.  The coefficient for this dummy 
variable is an indicator the effectiveness of a treatment. 
 
Let’s use intersection signalization treatment as an example to describe how to derive CMF from 
the crash models.  Suppose a prediction model for intersection crashes is as below: 

)exp(__ 3,,,
21

itititi Zaadtmiaadtma εβαλ ββ +•=    (7)                                                                            
and,  
,i tY  = observed number of crashes at site i  in year t   

ti ,λ = expected number of crashes at intersection i  in year t  

tiaadtma ,_  = AADT on major road at site t  in year t  

tiaadtmi ,_ = AADT on minor road at site i  in year t  
Intercept=α  

Z=Dummy variable, Z=1 for treatment site, and Z=0 for control site  
=321 ,, βββ Coefficients for tiaadtma ,_ , tiaadtmi ,_ , and Z, respectively 

The CMF for signalization treatment is exp( 3β ).  Since the cross-sectional method is not able to 
address the confounding issue, it may provide biased estimates. Interested readers can see Gross 
et al., (2010) and Carter et al., (2012) for more details on this issue. 
 

3.3	Cross-sectional	with	the	Propensity	Score	Methods		
 
Treatment selection is often influenced by subject characteristics, i.e., signalization treatment is 
normally implemented at stop controlled intersections with high traffic volumes. As a result, 
characteristics of treated sites often differ systematically from those of untreated sites. Therefore, 
one must account for systematic differences in characteristics between treated and untreated sites 
when estimating the effect of the treatment on expected crashes. Additionally, high traffic 
volume also causes high crashes and it is a confounder which affects the selection of the 
treatment and the outcome (crashes).  A traditional cross-sectional method is not able to address 
this confounding issue and a modified cross-sectional method is needed. The propensity score 
method is one of the methods to reduce or eliminate the effects of confounding when using 
observational data.   
 
A few popular propensity score methods including propensity score weighting, propensity score 
covariate, and propensity score matching were explored in this study. For the weighting or 
covariate methods, propensity score as well as a few variables derived from the propensity score 
can be used as a weight or covariate when developing the NB models. Similar to the traditional 
cross-sectional (CS) method, all the sites are used to develop the models by these two methods.   
For the matching method, there are a few ways to match a control site to a treated site in terms of 



 

Bo	Lan and Raghavan	Srinivasan  10 

how and which measure(s) should be used.  Unlike the above weighting and covariate 
adjustment propensity score methods, the CMFs are derived from the models developed from the 
matched data - the unmatched treatment or control sites are excluded in the modeling 
development. Therefore, the data from the propensity score matching methods are usually 
smaller than the original dataset for the CMFs development.  
 

3.3.1 Matching  
Matching is the most common propensity score method, which involves assembling the 
treatment sites and the control sites with similar or identical propensity scores or covariates.  
CMFs can then be estimated from the matched sample.  The analysis of the matched samples can 
then approximate that of a randomized trial by directly comparing outcomes between treatment 
sites and control sites which did not receive any treatment, using methods that account for the 
paired nature of the data such as mixed-effect NB or Poisson models based on the matched ID.  
Many statistical software packages provide options for estimating mixed effects models, e.g., 
SAS Glimmix procedure can be used to estimate mixed-effects models. 
 
 
3.3.1.1 Matching distances 
The first step for matching is to select the matching distance, in other words, which measure(s) 
should be used to match a control to a treated site.  A few matching distance measures such as 
Mahalanobis Distance (MD) as well as differences in propensity score or Logit of propensity 
score (LPS) between a treatment and a control sites can be used.  The propensity score distance 
(PSD) and Mahalanobis Distance (MD) were used in this study. 
 
3.3.1.1a Propensity Score Distance 
The propensity score was defined by Rosenbaum and Rubin (1983) to be the probability of 
treatment assignment ( !" = 1)	at	site	i	conditional on observed covariates: Pr !. = 1 |01.  
Where  01 is a set of covariates for site i.  It can be seen that the propensity score is a balancing 
score: conditional on the propensity score, the distribution of measured baseline covariates is 
similar between treated and untreated entities. Thus, in a set of entities all of whom have the 
same propensity score, the distribution of observed baseline covariates will be the same between 
the treated and untreated entities (Austin, 2011).  
 
In this study, the propensity score for a treatment was estimated using a binary logistic regression 
shown below: 
 Pr !. = 1 |01 =

234(601)

78234(601)
                                                           (8) 

Where, 
Pr !. = 1 |01  is the propensity score for a treatment at site i; 
01 is a set of covariates for site i. 
6 is the vector of parameters associated with covariates 01; 
 
The absolute value of difference in propensity score is defined as propensity score distance 
(PSD) and were used to match treatment site i and control j in this study. 
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9:;"< = Pr !" = 1 −Pr !< = 0   (9) 

 
3.3.1.1b Mahalanobis Distance 
 
Mahalanobis Distance (MD) measures the distance between the two observations Xi in a 
treatment group and Xj in a control group. The MD is calculated using the following equation.   
 

MDij = (Xi−Xj)′∑−1(Xi − Xj)     (10) 

Where Xi−Xj is the matrix of the differences in values between treatment site i and control site j 
for the variables included in the MD calculation, and Σ is the covariance matrix of X between the 
two groups.  It is intuitive to include all the significant variables from the logistic regression for 
the propensity score calculation for the MD calculation.  In addition to all the significant 
covariates, propensity score were also included in the MD calculation in this study.  Note that the 
MD matching measure works best with continuous variables. 
 
3.3.1.2 Matching Methods 
 
Matching is the most popular method that makes use of the propensity score. NN match with 
caliper option and the optimal matching are the two most popular and useful matching methods, 
and most statistics software have procedures to implement these two matching methods. 
Additionally NN match also has options for matching with and without replacement. PSMATCH 
procedure in SAS 14.2 was used to explore these two matching methods in this study. 
 
3.3.1.2a Nearest Neighbor Matching  
 
NN matching (Rubin, 1973) method is also called Greedy NN matching as it uses a “greedy” 
algorithm, which cycles through each treated unit one at a time, selecting the available control 
unit with the smallest distance to the treated site in terms of PSD or MD respectively in this 
study. The algorithm makes "best" matches first and "next-best" matches next, in a hierarchical 
sequence until no more matches can be made. 
 
1:1 vs k:1 matching  
In its simplest form, 1:1 nearest neighbor matching selects the control site j with the smallest 
distance for each treated site i. The advantage for 1:1 matching is that the matched sets are more 
similar compared to k:1 NN matching. k:1 NN matching allows k controls to be matched to the 
same treated sites. One issue regarding 1:1 matching is that it can discard a large number of 
observations and thus may lead to reduced precision for the CMF estimates. On the other hand, 
while k:1 NN matching increases the matched sample set, it reduces the similarity between the 
matched treated and control groups. In other words, selecting the number of matches involves a 
bias-variance trade-off. Selecting multiple controls for each treated site will generally increase bias 
since the 2nd, 3rd, and 4th closest matches are further away from the treated site compared to the 
1st closest match. On the other hand, utilizing multiple matches can decrease variance due to the 
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larger matched sample size.  An additional concern with k:1 NN matching is that, without any 
restrictions, it can lead to some poor matches, if for example, there are no control sites with 
propensity scores similar to a given treated site.  
 
Caliper width 
One strategy to avoid poor matches is to impose a caliper and only select a match if it is within the 
caliper width. Best matches are those with the lowest matching distances with the range of the 
caliper width.  This can lead to difficulties in interpreting effects if many treated sites do not receive 
a match, but can help avoid poor matches. For more details, see Rosenbaum and Rubin (1985).   
 
With or without replacement 
One way to resolve the issue when many treated sites do not receive a match is matching with 
replacements, indicating one where control sites are matched to multiple treated sites based on the 
aforementioned criteria. Matching with replacement can often decrease bias because controls that 
look similar to many treated individuals can be used multiple times. This is particularly helpful in 
settings where there are few control individuals comparable to the treated individuals (e.g., Dehejia 
and Wahba, 1999). However, inference becomes more complex when matching with replacement, 
because the matched controls are no longer independent. It is also possible that the estimate of the 
treatment effect will be based on just a small number of controls when matching with replacement. 
 
 
3.3.1.2b Optimal matching  
 
One issue of the NN matching is that the order in which the treated subjects are matched may 
change the quality of the matches. Optimal matching avoids this issue by taking into account the 
overall set of matches when choosing individual matches, minimizing a global distance measure 
(Rosenbaum, 2002). Generally, NN matching performs poorly when there is intense competition 
for controls, and performs well when there is little competition (Gu and Rosenbaum, 1993).  
 
In SAS PSMATCH procedure, all matches are selected simultaneously and without replacement 
to minimize the total absolute difference in propensity score or MD across all matches. Maximum 
variable ratio allows a specified maximum number of control sites to be matched to each treated 
site to achieve a minimal global PSD or MD. Note that this option uses much more computer 
memory compared to the NN matching.  
 
For this study, both PSD and MD were used as matching distance in both NN matching and optimal 
matching.  Additionally, in NN matching, 1:1, 5:1, and 10:1 with replacement(s) were also 
explored, and PS caliper width was set to be 0.25.  In optimal matching, the maximum variable 
ratio was set to be 5 to ensure larger matched samples.  
 
3.3.1.3 CMFs Development using the Propensity Score Matching Methods  
 
For the cross-sectional with the propensity score matching methods, the CMFs can be derived in 
two ways:   
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1. The CMFs can be developed in the same way as the traditional CS method using the NB 
model.  Instead of the whole dataset, the matched datasets are used 

2. Since the matched dataset includes matched treated and control sites. it may be more 
appropriate to use a method specifically for the matched data, where treatment effects are 
estimated after controlling the effects in each matched control sites.  Mixed-effects model 
is one of the options for this purpose, where matched ID is used for the random effects.  
The Equation for the mixed-effects model is: 

 
)exp(__ _3,,,

21
IDmatchedtititi Zaadtmiaadtma εβαλ ββ +•=    (11)                                                                            

 
 
It can be seen Equation (11) is similar to Equation (7) for the traditional CS. In mixed-effects 
model, instead of a site level error iε , a matched pair error IDmatched _ε is used indicating each 
matched pair share the same error. 
 
Both methods were used for the CMFs development.  Poisson models were also used if the NB 
models could not be estimated due to possible convergence issues. 

 
 
3.3.2 Weighting Using the Propensity Score 
Unlike the matching methods, this method uses all of the sites to derive CMFs. In this method, 
propensity scores are used to calculate statistical weights for each site.  The following three 
measures derived from propensity score can be used as a weight to balance the distributions of 
measured covariates between the treatment and reference groups so that the treatment assignment 
is independent of the measured covariates.  
 
Inverse Probability of Treatment Weighting (IPTW)  
Inverse probability of treatment weighting was first proposed by Rosenbaum (1987) as a form of 
model-based direct standardization. In this method, a site’s weight is equal to the inverse of the 
probability of receiving the treatment that the site actually received. IPTW can be calculated as 
following: 
 

For treatment sites, IPTW=1/PS; and  
For reference sites, IPTW=1/(1-PS) 
 

Stabilized Inverse Probability of Treatment Weighting (SIPTW) 
The above IPTW may be inaccurate or unstable for sites with a very low probability of receiving 
the treatment received, as a small propensity score will receive a huge weight and vice versa. To 
address this issue, the use of stabilizing weights, which is called Stabilized Inverse Probability of 
Treatment Weight (SIPTW), has been proposed (Robins, Hernan, & Brumback, 2000).  The 
equations to calculate SIPTW is as below: 
 

For treatment sites, IPTW=PSm/PS; and  
For reference sites, IPTW=(1-PSm)/(1-PS). 



 

Bo	Lan and Raghavan	Srinivasan  14 

 
Where PSm is the mean value of the propensity score in the dataset. 
From the above equations, SIPTW can be seen as a smoothed IPTW by the mean value of 
propensity score such that there are no extremely big or small values of the weight. 
 
Standardized Mortality Ratio Weighting (SMRW) 
Standardization is a way to validly summarize treatment effects in the presence of treatment effect 
heterogeneity. Note that matching implicitly standardizes the estimate to the treated population. 
“Standardizing” to the treated population can also be achieved using standardized 
mortality/morbidity ratio weights (SMRW) (Sato and Matsuyama, 2003, Stürmer et al, 2014). 
These weights create a pseudo-population of the untreated, which has the same covariate 
distribution as the treated. The SMRW can be defined as: 
 
For treatment sites, SMRW=1; and  
For untreated reference sites, SMRW= PS/(1-PS). 
 
For the cross-sectional model with the propensity score weighting methods, CMFs can be derived 
in the same way as in the traditional CS method, after including a weight option during the 
estimation.  
 
3.3.3 Covariate Adjustment Using the Propensity Score 
For this approach, the propensity score is included as a covariate in the model development. Thus 
CMFs associated with the treatment can be estimated while adjusting for the probability of 
receiving that treatment. This is one of the commonly used propensity score method in the medical 
literature (Weitzen et al, 2004, Shah et al., 2005, Stürmer et al., 2006). Implicit in the use of this 
method is that effect of treatment is being compared between treated and untreated subjects with 
the same propensity score. This method assumes that treated and untreated sites with the same 
propensity score have the same distribution of measured variables (Austin, 2009). Some 
researchers believe this method allows the investigator to estimate the outcome associated with the 
treatment while adjusting for the probability of receiving that treatment, thus reducing confounding 
(Haukoos and Lewis, 2015), while other researchers argue that covariate adjustment does not allow 
for balancing of covariates across treated and control groups as achieved with other propensity 
score methods. They believe this method cannot properly account for confounding issue and thus 
may provide biased results (Garrido, 2016, Austin, 2009, and Hadea and Lu, 2014).  Austin 
(Austin, 2009) conducted an evaluation of the propensity score methods using empirical and 
simulated clinical data. He found this method provided biased results associated with treatment 
effect estimation when the propensity score is used as a covariate in nonlinear regression models, 
such as logistic regression and Cox proportional hazards models. Hadea and Lu (2014) found this 
method provided biased results even using a linear model. 
 
Though only PS is used as a covariate in the literature, we think that those three weighting options 
in   the above PS weighting method, if used as covariates, could also be used to balance the 
distributions of the measured covariates between the treated and control groups and thus improve 
the CMF evaluation. Additionally, the logit of Propensity Score (LPS) which is defined as 
log(PS/(1-PS) could also be used for this purpose. Thus, five measures including PS, LPS, IPTW, 
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SIPTW, and SMRW were explored and included as a predictor in Equation (7), respectively, and 
a log linear relationship to the expected crashes was assumed in this study. 
 
To the authors’ knowledge, this propensity score weighting and covariate adjustment methods 
have not been evaluated in crash studies.  Additionally, there is no literature on the covariate 
method using the above four measures (LPS, IPTW, SIPTW, SMRW).   For this reason, this 
method was evaluated by using propensity score, IPTW, SIPTW, SMRW, and LPS as a predictor 
respectively. 
 
Similarly, CMFs can be calculated in the same way as in the traditional CS method.  Instead of 
using the weighting option in the PS weighting method, PS  is used as a covariate when developing 
the NB models.  
 

4. STUDY	DESIGN	
As aforementioned, the objective of this study is to evaluate the above propensity score methods 
and compared to the CMFs from the EB and traditional CS methods. To this end, an appropriate 
study design is needed.  
 
Simulated datasets have the advantage since the true CMFs are known, and the different methods 
can be evaluated based on difference between the estimated and the true CMFs. The best method 
can be identified based on the difference between estimated CMF and the true CMF. In order to 
consider a realistic scenario, the study design should allow for distribution of the major covariates 
to be significantly different between the treated and control groups, and in this case, the traditional 
cross-sectional method may provide biased CMF estimates.  In addition, it is possible significant 
differences between reference and treatment groups may provide a biased estimates from the EB 
before-after method. On the other hand, the reference group should have enough sites that can be 
matched to the treated sites so that it is possible to implement and evaluate the matching methods.  
 
We also wanted to use different true CMF values and dispersion parameters reported in previous 
studies when generating the crash counts at each site.  Additionally, the simulated annual average 
daily traffic volumes (AADTs) and crash counts should be realistic. We finally decided to simulate 
urban stopped intersections as control sites and signalization as a countermeasure.  In order to 
evaluate the EB before after method, before-after data are needed.  We decided to generate 11 
years of data and assumed that a signalization treatment occurred in year 6 at some of the 
intersections with high traffic volumes on the major road (ma_aadt), such that there were 5 years 
before and after periods, respectively, for estimated the CMFs using the EB before-after method.  
The 5 years of after period data was selected for evaluating the traditional cross-sectional as well 
as the PS methods. 
 
As mentioned earlier, we need to have some control sites with similar distributions of the major 
covariates as the treated group so that the matching methods can be applied. Thus, part of the top 
ranked intersections were set to be part of the control sites.   The majority of the control sites, 
however, were from the intersections with lower ma_aadts.  In this way, we hope there are some 
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control sites which can be used for matching and there is a significant difference between the 
treated and control sites since the majority of the control sites were from the intersections with 
much lower ma_aadts.   
 
After assigning treatment and control sites and following Donnell et al. (2017), a confounder was 
then assigned to each treated and control site with different distributions in the two groups. In order 
to simulate realistic traffic volumes on major and minor roads as well as crash counts, a literature 
review was conducted for recent studies on SPFs developments for urban stop-controlled 
intersections.  The crash counts were then generated for each site assuming a negative binomial 
distribution using a SPF similar to those found in previous studies.   
 
After the datasets were generated, the summary statistics of the variables in the SPFs and crash 
counts by treatment/ control groups were compared to ensure that was a difference in the two 
groups. The generated datasets were then used for the EB and the traditional CS analysis.  The 
final datasets were then used to conduct the propensity score methods evaluation.  The below has 
the details on how to generate the simulated datasets.  
 
 

5. SIMULATED	DATA	
 
  
In deriving the simulated data, it was assumed, as is common, that the crash count over “similar” 
sites follows a negative binomial distribution (NBD). The NBD may be derived by “heterogenous 
Poisson sampling” which assumes that the crash count iY  at a site over time is Poisson distributed 
with unknown mean iλ  per unit of time at site i  and that these means iλ  follow a Gamma 
distribution over similar sites, such that  

( ) ( )E Y E λ=  and  
2( ) ( ) ( ) /Var Y E Eλ λ ϕ= +         (12)                                                                            

Where, ϕ  is the dispersion parameter of the NBD. 
The data used to examine the propensity score methods were generated from a Poisson-

Gamma distribution (Lord, 2006; Lan et al, 2009). The simulation framework for the stop-
controlled intersection dataset used for the study is as follows: 

 
Step 1: For year 1, randomly generate entering traffic volumes on the major road (5000 ~ 50,000 
ma_aadt) which follows a truncated normal distribution with mean of 20,000 and standard 
deviation of 6000. Similarly generate aadt on minor road (500 ~ 5,000 mi_aadt) with mean of 
2,000 and standard deviation of 600. The number of sites was set to be 100,000 to ensure that 
control sites are significantly different from the treated sites in terms of ma_aadts as well as there 
are enough sites for the evaluation after identifying subsets of the data. 
 
Step 2: ma_aadts for the remanig 10 years were generated with random variation (within 5%), such 
that most of the traffic volumes would be around the mean value 20,000 AADT. 
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Similarly, traffic volumes were generated randomly on the minor road in the range of 500 ~ 5000 
mi_aadt across 11 years with random variation (within 5%).  
 
Step 3: Sort the ma_aadt from high to low. The top 3000, 5000, and 10000, sites were selected.  
Then we randomly assigned top 20% -5% of the above high ma_aadt sites to be treated sites. The 
treated sites are 470, 492, 1026, and 2017 respectively. The remaining sites with high ma_aadts 
were partially assigned to the control group. The number of the assigned control sites with high 
ma_aadts was about 2-6 times the treated sites.  
 
Step 4: Since in practice the treatment group is quite different from a reference group, we wanted 
to identify control sites that were significantly different from the treated sites in terms of the 
average ma_aadt.  The 20,000 – 30,000 sites with lowest ma_aadts in the initially generated 
100,000 sites were thus selected to be in the control group. 
 
Step 5: The treated and control sites with 11 years' ma_aadts and mi_aadts data were generated 
after Step 4. We then generated a confounding variable v_w with different distribution between 
the treated and control groups.  

?_A|!~C(50 ∗ (1 + 0.5!), (10 ∗ 1 + 0.5! )I)   (13) 

Where, 
Z=Dummy variable, Z=1 for treatment site, and Z=0 for control site  

 
Step 6: It is assumed the treatment was implemented in year 6. Year 1 to year 5 is before period 
and years 7- 11 is after period.  CMFs were applied to treated sites in the after period when 
generating the crash counts from the NB models from the following model. 

)1()_exp(__
0

21
4,,, Ttitititi ZCMFwvaadtmiaadtma >×+×+×= εβαλ ββ  (14) 

Where, 

4β  =parameter associated with the confounding variable V, 

0Tt
Z > = dummy variable,  

0Tt
Z > =1 for treated sites when year > treatment year T0;  

Otherwise 
0Tt

Z > =0. 

Safety performance function (SPF) parameters α , 21,ββ  were developed from the CMFs in 
California state (Bhim, 2006) and Virginia states (Garber and Rivera, 2010).  The SPF used was:  

)1()0.015v_wexp(__0.00004
0

0.4813
,

0.6191
,, Ttitititi ZCMFaadtmiaadtma >×+×+×= ελ  (15) 

Where CMF=1.3, 1.0, 1.15, 0.85 respectively for the four datasets. 
 
 
Step 7: Calculate the expected number of crashes ti ,λ  for intersection i  across 11 years from the 
above SPF (Equation 15). 
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Step 8: Generate a scale factor iδ  from a Gamma distribution with the mean equal to 1 and the 

dispersion parameter φ: )1,(~
ϕ

ϕδ gammai . It is necessary to use the parameterization of the 

gamma distribution ),(~ bagammaδ   when its mean and variance are defined as E(δ) = ab and 
Var(δ) = ab2, respectively.  It can be shown that when E(δ) = 1 and Var(δ) = 1/φ (where a = φ 
and b=1/φ), the Poisson-gamma function gives rise to a NB distribution with Var(Y) =µ+µ2/φ (Lord 
2006, Cameron and Trivedi 1998 ). 
Step 9: Calculate the modified mean ititi δλµ ×= ,,  
Step 10: Generate a discrete value ,i tY  for the observed count at intersection i  in year t  from a 
Poisson distribution with mean ti ,µ . 

It is worth mentioning that the simulation was performed to generate the 4 datasets, with 
dispersion parameters ϕ  of 0.5, 1.0, 1.5, and 2.0, respectively, to reflect the range of typical values 
reported on relevant studies. CMFs of 0.85, 1.0, 1.15, and 1.30 were also applied so that each 
simulated dataset has a different CMF value. 

 
For the generated datasets, the EB evaluation and traditional CS were conducted first. The 

results showed that both methods almost perfectly estimated the CMFs from the simulated 
datasets, probably due to there are enough sites that are similar to the treated sites in the control 
group. From these data sets, treated sites were further subset based on the site-level naïve CMFs 
while the control sites stayed the same.  The final simulated datasets were selected such that the 
characteristics of the treated and control sets were significantly different which led to the estimated 
CMFs from the EB method to be significantly different from the true CMF – the intent was to 
determine whether the PS method would provide an estimated CMF that was closer to the true 
CMF compared to the EB method.  Since the two datasets with the larger number of treated sites 
were not possible to implement for the optimal matching method due to the computer memory 
limits, the CMFs from the other methods from these two large datasets are not included in the 
report. The final two simulated datasets and their summary statistics are described in Tables 1 and 
2. 

 
 

Table	1	summary	statistics	for	simulated	dataset	1	
(True	CMF=1.30	and	dispersion	parameter=1/1.5)	

Control/Treated Variable Min Max Mean Std Dev 

Control group  
21000 sites (1000 

sites with high 
ma_aadt) 

confounding	variable	V	 8.25	 90.58	 50.06	 10	
ma_aadt	 11219	 47528	 15712	 4807	
ma_aadt	 485	 5273	 1963	 597	
Crashes/site.year	 0	 12.91	 1.29	 3.99	
ma_aadt	-	before	 10122	 47818	 15790	 4659	
mi_aadt	-	before	 491	 4956	 1963	 591	
ma_aadt	-	after	 12018	 51087	 15636	 5002	
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mi_aadt	-	after	 462	 5560	 1963	 608	
Crashes/site.year	-	before	 0	 12.20	 1.30	 2.83	
Crashes/site.year	-	after	 0	 14.60	 1.28	 2.81	

Treated group                  
386 sites 

confounding	variable	V	 26.05	 117.53	 76.39	 14.61	
ma_aadt	-	before	 26782	 43712	 31854	 2671	
mi_aadt	-	before	 589	 4507	 2126	 684	
ma_aadt	-	after	 30469	 46245	 33138	 2423	
mi_aadt	-	after	 556	 4341	 2124	 696	
Crashes/site.year	-	before	 0	 16	 3.19	 6.14	
Crashes/site.year	-	after	 1	 19	 4.65	 8.02	

 
 
		
 

Table	2	summary	statistics	for	simulated	dataset	2		
	(True	CMF=1.00	and	dispersion	parameter=2)	

Control/Treated Variable Minimum Maximum Mean Std 
Dev 

Control group  
23000 sites (3000 

sites with high 
ma_aadt) 

confounding	variable	V	 11.3	 89.74	 49.97	 9.94	
ma_aadt	 8998	 47528	 16049	 7115	
ma_aadt	 487	 5273	 1967	 618	
Crashes/site.year	 0	 31.73	 1.28	 6.61	
ma_aadt	-	before	 8185	 47818.00	 16063.40	 6891.79	
mi_aadt	-	before	 496	 4956.00	 1967.03	 612.05	
ma_aadt	-	after	 9727	 51087.00	 16035.29	 7369.87	
mi_aadt	-	after	 462	 5560.00	 1966.55	 628.78	
Crashes/site.year	-	before	 0	 31.60	 1.29	 4.53	
Crashes/site.year	-	after	 0	 34.00	 1.28	 4.55	

Treated group                  
343 sites 

confounding	variable	V	 31.63	 115.94	 74.91	 14.07	
ma_aadt	-	before	 24439	 40561	 30202	 2733	
mi_aadt	-	before	 681	 3860	 2104	 623	
ma_aadt	-	after	 28057	 41851	 31136	 2601	
mi_aadt	-	after	 654	 3887	 2109	 641	
Crashes/site.year	-	before	 0	 33.60	 3.35	 11.06	
Crashes/site.year	-	after	 0	 36.80	 3.00	 10.94	

	
It can be seen the ma_aadt and average crashes per site per year in the treated group are 
higher than those in the reference group as expected.   This phenomenon is normal in 
real data. 
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6. EVALUATION	RESULTS	
 

The two simulated datasets were explored using the EB, traditional CS, and the various propensity 
score methods as aforementioned.  As mentioned earlier, the after period (year 7 to year 11) was 
used for the traditional CS and the propensity score methods while the period from year 1 to year 
11 was used for the EB evaluation.  It is worth mentioning that the caliper width of propensity 
score for the NN matching by propensity score or MD was set to 0.25 in this study. The NN 
matching was explored using propensity score with 5 replacements and MD match using 1, 5, and 
10 replacements respectively.  The optimal matching by propensity score and MD was also 
investigated, respectively, and the maximum variable ratio was set to be 5.  
 

6.1	CMFs	from	Dataset	1	
 

There are 386 treated sites and 21,000 reference sites dataset 1 and the true CMF=1.30.  Among 
the 21000 reference sites, there are 1000 sites with ma_aadts similar to those in the treated sites 
and 20,000 sites with much lower ma_aadts. The CMFs in terms of mean and 95% confidence 
limits by various methods are shown in Table 3.   

 
If the true CMF 1.30 is located between the 95% confidence limits of the estimated CMFs, we 
concluded that the method correctly identifies the true effects and gave a "Yes" in Table 3.  
However, if 1.3 is near the upper of lower 95% limits, to be conservative, we still give a "No".  

 
For the propensity score covariate adjustment method, each of the propensity score covariates is 
insignificant and less significant than the dummy variable Z, and hence, each of them was excluded 
from the SPFs, and the CMFs from this method is identical to the CMF from the traditional CS.   
 
For the methods where the CMFs were calculated from the SPFs developed using all the sites, only 
the weighting method using SIPTW correctly identifies the true CMF, all other methods including 
the EB and traditional CS methods fail.   
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Table 3 Comparison of CMFs for Dataset 1 (True CMF=1.30) 

mean 95% confidence 
limits method model Control 

Sites 
Treated 

sites 

Treatment 
Effects 

Identified? 

1.427 1.382 1.473 EB  NB 21000 386 No 

1.399 1.328 1.473 Traditional Cross-Sectional NB 21000 386 No 

1.385 1.328 1.443 weight=IPTW NB 21000 386 No 

1.258 1.107 1.429 Weight=SIPTW NB 21000 386 Yes 

1.415 1.372 1.460 weight=SMRW NB 21000 386 No 

1.399 1.328 1.473 covariate adjustment (propensity score) NB 21000 386 No 

1.399 1.328 1.473 covariate adjustment (LPS) NB 21000 386 No 

1.399 1.328 1.473 covariate adjustment (IPTW) NB 21000 386 No 

1.399 1.328 1.473 covariate adjustment (SIPTW) NB 21000 386 No 

1.399 1.328 1.473 covariate adjustment (SMRW) NB 21000 386 No 

0.674 0.521 0.872 NN matching by PSD (5 replacements) NB 10 371 No 

0.602 0.515 0.703 NN matching by PSD (5 replacements) mixed-effects Poisson 10 371 No 

1.391 1.232 1.571 NN matching by MD (1 replacement) NB 58 362 Yes 
1.289 1.170 1.420 NN matching by MD (5 replacements) NB 198 362 Yes 

1.262 1.158 1.375 NN matching by MD (5 replacements) mixed-effects NB 198 362 Yes 

1.328 1.212 1.454 NN matching by MD (10 replacements) NB 313 362 Yes 

1.302 1.233 1.375 NN matching by MD (10 replacements) mixed-effects Poisson 313 362 Yes 

1.331 1.240 1.428 optimal matching by PSD (max variable ratio=5) NB 1158 386 Yes 

1.358 1.296 1.423 optimal matching by PSD (max variable ratio=5) mixed-effects Poisson 1158 386 Yes 

1.364 1.276 1.459 optimal matching by MD (max variable ratio=5) NB 1158 386 Yes 

1.463 1.391 1.538 optimal matching by MD (max variable ratio=5) mixed-effects Poisson 1158 386 No 
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For the matching methods, the NN matching using propensity score with 5 replacements has the 
worst results because only 10 control sites were repeatedly matched to the 371 treated sites.  All 
other matching methods, except optimal matching by MD using mixed effects model, correctly 
identify the true effects. It can be seen the CMFs from the mixed-effects models are generally 
consistent with from the NB models, but with a lower standard errors. The lower standard error 
means a more stable estimates. Thus the mixed-effects model is deemed to be a better option for 
the CMF estimation for these matching methods. The CMFs from the mixed-effects Poisson 
models are listed in the Table where mixed-effects NB models are not available due to convergence 
issue. 

 
Figures 1 and 2 illustrate the pattern of the standardized mean differences (SMD) for the propensity 
score, LPS, confounding variable v_w, and ma_aadt matched by the NN propensity score and MD 
with 5 replacements, respectively, where the SMD is computed by dividing the difference (Treated 
- Control) in the means of the variable in the two groups by an estimate of the standard deviation. 
SMD can be used to show the quality of the matching - the closer to 0 the absolute value of SMD, 
the better balanced in the treated and control groups. Note that mi_aadt is not significant in the 
logistic regression, and is not shown here.   
 

 

 
 
Figure 1 Standardized Mean Differences from NN matching by PSD  
(5 replacements, dataset 1 with true CMF=1.30) 
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"All Obs" in the legends in Figure 1 stands for all the data, "Region Obs" is the common region 
data indicating only those observations whose propensity score line in the common support 
region be used for calculation. The common support region is also the largest interval that 
contains propensity scores for subjects in both groups. "Matched Obs" refers to the matched data. 

 

 

	
 
Figure 2 Standardized Mean Differences from NN matching by MD 
(5 replacements, dataset 1 with true CMF=1.30) 
 

 

For the NN matching by PSD in Figure 1, the SMD of zero for the propensity score in the 
matched data indicates propensity score is perfectly matched.  SMD for the LPS and lnma7_11m 
which is the logarithm value of average ma_aadt in the after period, are much smaller than those 
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in the original or the common region data indicating these variables are better balanced in the 
matched data.  The SMD for the confounding variable v_w is almost the same as before 
matching, this is expected as we purposely implemented the different means for v_w into the two 
groups.  

In Figure 2, for the NN matching by MD with 5 replacements, the absolute value of the SMDs 
are much smaller than those in Figure 1, meaning the variables in the treated and control groups 
are much better balanced compared to the NN matching by PSD.   

Note that zero of SMD in Figures 1 and 2 cannot be interpreted as a perfect match as it is only 
about the mean difference.  To better understand the balance of the variables in the matched data, 
we can take a look at the boxplots of the variables from the matched, common region, and the 
whole dataset.  The boxplots of v_w and lnma7_11m are shown in Figures 3 to 6.  It can be seen 
the balance of these two variables is much more improved by NN matching using the MD. 
Additionally, lnma7_11m in Figure 5 by the NN using PSD has a much wider range in the 
matched control group and a narrower range in the treated group indicating a poor match. Since 
ma_aadt is a major factor  associated with the crashes, this method has the worst results because 
of the poor match in ma_aadt and only 10 control sites in the matched data. 

 

 
 
Figure 3 Distribution of confounding variable v_w from NN matching by PSD 
(5 replacements, dataset 1 with true CMF=1.30) 
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Figure 4 Distribution of confounding variable v_w from NN matching by MD 
(5 replacements, dataset 1 with true CMF=1.30) 
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Figure 5 Distribution of lnma7_11m from NN matching by PSD 
(5 replacements, dataset 1 with true CMF=1.30) 
 
 

 
 
Figure 6 Distribution of lnma7_11m from NN matching by MD 



 

Bo	Lan and Raghavan	Srinivasan  27 

(5 replacements, dataset 1 with true CMF=1.30) 
 

From Table 3, surprisingly, the CMFs by the optimal matching using MD is not as good as the 
CMFs by the optimal matching using PSD.  For the later method, the objective function is to 
have a minimal absolute difference of propensity score, however, the point of the SMD of 
propensity score is not located near the zero line as the two NN matching methods.  The reason 
for that is, unlike RMSE, the SMD is just about the mean difference. Although the SMD graph is 
not as good as the one by  the NN MD method, the boxplots in Figures 8 to 9  show the balance 
for variables v_w and lnma7_11 are as good as those by the NN MD.  The number of matched 
control sites by this method is 1158 while it is just 198 by the NN MD method. A larger sample 
size of the control group allows a smaller standard error of CMF as shown in Table 3. Given the 
similar CMF mean vales by the two methods, the optimal matching by PSD is better due to a 
smaller standard error of the CMF estimates. 

 
 

 
 
Figure 7 Standardized Mean Differences from Optimal matching by PSD 
(max. variable ratio=5, dataset 1 with true CMF=1.30) 
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Figure 8 Distribution of confounding variable v_w from Optimal matching by 
propensity score 

(Max. variable ratio=5, dataset 1 with true CMF=1.30) 
 
 

 

Figure 9 Distribution of lnma7_11m from Optimal matching by PSD 
(Max. variable ratio=5, dataset 1 with true CMF=1.30, lnma7_11m=log (average of ma_aadt)) 
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6.2	CMFs	from	Dataset	2	
 

The dataset 2 has 343 treated sites and 23000 control sites and its true CMF is 1.00. The CMFs 
results are in Table 4.  Unlike dataset 1, each of the covariate adjustment factors is significant and 
three of them correctly identify the tree effects.  The weighting by SIPTW, which has good CMF 
estimate for dataset 1, does not perform well for dataset 2.  For the matching methods, NN 
matching by PSD continues to have least matched control sites (5 sites only) and provide the 
poorest CMF estimates. On the other hand, optimal matching by PSD continue to provide the most 
promising CMFs estimates. Additionally NN MD matching with 1 or 5 replacements correctly 
estimates the true effects. The matching with 1 replacement has better estimates than the matching 
with 5 replacements.  The traditional CS, weighting by IPTW or SMRW, as well as the covariate 
adjustment method using LPS, IPTW, or SIPTW all correctly estimate the true CMF.  Again, the 
optimal MD matching doesn't perform well.   
 
Two statistical measures for balance assessment, which are the standardized mean difference 
between the treatment and control groups and the treated-to-control variance ratio, are listed in 
Table 5. The variance ratio is the treated-to-control variance ratio for each variable, calculated by 
dividing the variance in the treated by the variance in the control group. For good variable balance, 
the absolute standardized mean difference should be less than or equal to 0.25, and the variance 
ratio should be between 0.5 and 2 (Rubin 2001, p. 174; Stuart 2010, p. 11).    The two statistical 
measures for v_w and lnma7_11m are shown in Table 5.   
 
For the NN PSD matching, the SMD for lnma7_11m is getting larger compared to those from all 
data or common region data. It indicates the balance of this variable is becoming worse after 
matching.  The SMD for v_w becomes smaller after match, but the variance ratio is getting bigger 
and far away from 2.  It is not clear if the balance for v_w is indeed improved based on the 
conflicting information in the MSD and the variance ratio.  
 
For the optimal PSD matching, the SMD is significantly reduced from 2.9 to -0.53 and the variance 
ratio is improved for variable lnma7_11m, indicating the balance of lnma7_11m is greatly 
improved after matching. Compared to SMD of 3.2 from the matched data by the NN PSD 
matching, the optimal PSD matching greatly improve the balance of lnma7_11m. Again, 
distribution of v_w is almost the same as in the original data since we deliberately gave the 
different means in the two groups when simulating the dataset.  The CMFs from this match is 
almost identical to the true CMF. 
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Table	4		Comparison	of	CMFs	for	Dataset	2	(True	CMF=1.00)	

mean 95% confidence 
limits method model Control 

Sites 
Treated 

sites 

Treatment 
Effects 

Identified? 

0.884 0.851 0.917 EB  NB 23000 343 No 

1.016 0.938 1.100 Traditional Cross-Sectional NB 23000 343 Yes 

1.054 1.001 1.111 weighting by IPTW NB 23000 343 Yes 

1.390 1.180 1.638 weighting by SIPTW NB 23000 343 No 

1.037 1.002 1.074 weighting by SMRW NB 23000 343 Yes 

1.154 1.041 1.280 covariate adjustment (PS) NB 23000 343 No 
1.047 0.956 1.148 covariate adjustment (LPS) NB 23000 343 Yes 

1.008 0.931 1.093 covariate adjustment (IPTW) NB 23000 343 Yes 
1.017 0.940 1.101 covariate adjustment (SIPTW) NB 23000 343 Yes 

1.357 1.066 1.726 covariate adjustment (SMRW) NB 23000 343 No 

0.656 0.235 1.831 NN matching by PSD (5 replacements) NB 5 341 No 
0.654 0.239 1.790 NN matching by PSD (5 replacements) mixed-effects NB 5 341 No 

1.057 0.873 1.282 NN matching by MD (1 replacement) NB 101 343 Yes 
1.012 0.942 1.087 NN matching by MD (1 replacement) mixed-effects Poisson 101 343 Yes 

1.137 0.995 1.301 NN matching by MD (5 replacements) NB 311 343 No 

1.123 0.989 1.276 NN matching by MD (5 replacements) mixed-effects NB 311 343 No 
1.195     NN matching by MD (10 replacements) NB 509 343   

1.182 1.050 1.331 NN matching by MD (10 replacements) mixed-effects NB 509 343 No 

1.035 0.910 1.177 optimal matching by PSD (max variable ratio=5) NB 1029 343 Yes 

0.991 0.934 1.051 optimal matching by PSD (max variable ratio=5) mixed-effects Poisson 1029 343 Yes 

1.149 1.037 1.272 optimal matching by MD (max variable ratio=5) NB 1029 343 No 

1.234 1.188 1.281 optimal matching by MD (max variable ratio=5) mixed-effects Poisson 1029 343 No 
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Table	5	Variable	balance	information	in	the	matched	data	

Match	Method	
Variable 

Observations Mean 
Difference 

Standard 
Deviation 

Standardized 
Mean 

Difference 

Variance 
Ratio 

NN	matching	by	
PSD	with	5	

replacements	

lnma7_11m 
All 0.7326 0.2511 2.917 0.053 

Region 0.7326   2.917 0.053 
Matched 0.8044   3.203   

v_w 
All 24.9439 12.1828 2.047 2.006 

Region 24.9439   2.047 2.006 
Matched 21.5501   1.769 3.251 

Optimal	
matching	by	
PSD	with	max.	
variable	ratio	of	

5	

lnma7_11m 
All 0.7326 0.2511 2.917 0.053 

Region 0.7326   2.917 0.053 
Matched -0.1343   -0.535 0.125 

v_w 
All 24.9439 12.1828 2.047 2.006 

Region 24.9439   2.047 2.006 
Matched 25.5264   2.095 2.027 

Note: Standard deviation of All observations used to compute standardized differences 
 
 

6.3	Comparison	of	the	Methods	
 

From Tables 3 and 4, we can see the CMFs from the two datasets are not always consistent for 
each method.  The comparison of the performance in terms of if each method can correctly 
identify the true effects for the two datasets is listed in Table 6.  If the method can correctly 
estimate the true effects for the two datasets, we give a “Yes”, if CMF is missing for either 
datasets then it is blank, otherwise it’s a “No”. There are cases where the true CMF may be 
located in the 95% confidence limits but very close to the lower or upper limits. To be 
conservative, we define that method failed to estimate the true effects, i.e. NN matching by MD 
with 5 replacements for dataset 2 is such a case.   

It can be seen, out of 22 methods or options, only three of them can consistently correctly 
identify the true effects using the two simulated datasets. The three methods include the optimal 
PSD matching with max variable ratio of 5 with NB or mixed-effects model, and the NN MD 
matching with 1 replacement using the NB model. It is worth mentioning that the mixed-effects 
model is not available for the NN MD matched data due to convergence issue.  The CMFs 
estimated using the two datasets are not always consistent indicating different results may be 
possible using other simulated datasets.  
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Table	6	Comparison	of	the	Methods	in		Datasets	1	and	2	

Method	 Model	
Treatment	Effects	
Identified	in	both	

Datasets?	

EB		 NB	 No 

Traditional	Cross-Sectional	 NB	 No 
weight=IPTW NB	 No 

Weight=SIPTW	 NB	 No 

weight=SMRW	 NB	 No 

covariate	adjustment	(propensity	score)	 NB	 No 

covariate	adjustment	(LPS)	 NB	 No 

covariate	adjustment	(IPTW)	 NB	 No 

covariate	adjustment	(SIPTW)	 NB	 No 

covariate	adjustment	(SMRW)	 NB	 No 

NN matching by PSD (5 replacements) NB	 No 

NN matching by PSD (5 replacements) mixed-effects	model	 No 

NN matching by MD (1 replacement) NB	 Yes 

NN matching by MD (1 replacement) mixed-effects	model	 	
NN matching by MD (5 replacements) NB	 No 

NN matching by MD (5 replacements) mixed-effects	model	 No 

NN matching by MD (10 replacements) NB	   

NN matching by MD (10 replacements) mixed-effects	model	 No 

optimal	matching	by	PSD	(max	variable	ratio=5)	 NB	 Yes 

optimal	matching	by	PSD	(max	variable	ratio=5)	 mixed-effects	model	 Yes 

optimal	matching	by	MD	(max	variable	ratio=5)	 NB	 No 

optimal	matching	by	MD	(max	variable	ratio=5)	 mixed-effects	model	 No 

 
The CMFs identified from the matched datasets by the optimal PSD matching are much better than 
those by the NN MD matching with 1 replacement in terms of closer values to the true CMFs and 
estimated standard errors even though the later method also correctly identifies the CMFs. The 
important findings from this study are as following: 

1. The NN MD matching with 1 replacement and the optimal matching by propensity 
score correctly identify the true effects. 

2. The optimal PSD matching with max variable ratio of 5 has the most number of 
matched control sites and provide the best CMF estimates 

3. The NN PSD matching with 5 replacements has the least number of matched control 
sites and is the worst method for CMF estimates 

4. The optimal MD matching with max variable ratio of 5 does not perform as well as the 
NN MD matching with 5 replacements. 

5. The mixed-effects has the better results than the traditional NB models in terms of 
better estimate for the mean values and smaller stand errors. 
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6. Weighting by IPTW and SMRW as well as covariate adjustment by LPS, IPTW, and 
SIPTW generated similar or better CMFs than the EB method. 

 
Based on the above findings, we recommend the optimal PSD matching for the CMFs 
evaluation.   It can be seen the optimal PSD is even outer performs the EB method in this 
simulated study in that the EB method fails to identify the true effects. However, it is worth 
mentioning that the explored EB method for this comparison study used only the reference sites 
to develop the SPF. There are other variations when using the EB method that have been used 
when there are significant differences between treated and untreated groups, e.g., the treated 
group in the before period data as well as a dummy variable indicating treated or reference site is 
used for the SPF development.  Moreover, since the CMFs pattern estimated using the two 
datasets are not always consistent by each of the methods and the two datasets were purposely 
selected where the EB method failed to identify the true effects.  It may be too early to conclude 
that the recommended optimal PSD method is better than the EB method for all CMF 
evaluations.  More simulation studies are needed before definitive conclusions can be made. The 
weighting by IPTW and SMRW as well as the covariate adjustment by LPS, IPTW, and SIPTW 
are also suggested for further exploration using different simulated datasets as these five methods 
consistently have similar or better CMFs than the EB method based on the two datasets 
examined in this effort.  

7. CONCLUSIONS	
 
The cross-sectional method that make use of various propensity score methods were explored in 
this study.  These methods were evaluated and compared with the two most common CMF 
evaluation methods – the traditional cross-sectional and the EB methods using two carefully 
selected simulated datasets.  First, 11 years of traffic volumes on both major and minor roads were 
generated from truncated normal distribution to ensure realistic traffic volume that found on the 
roads. Then treated sites were randomly assigned to the sites with high traffic volumes on major 
roads. The control sites included part of the high ma_aadt sites to ensure a match is possible, but 
the majority was from the very low ma_aadt sites to simulate some realistic situations.  After that, 
a confounding variable which is significantly different in the treated and control groups was also 
added to the datasets. A hypothetic treatment was assumed to be implemented in year 6 at the 
treated sites and the true CMFs was assumed for each of the datasets.  Finally, the crash counts 
were generated through a NB model. The final two datasets were selected where the EB failed to 
identify the true effects, with the goal of determining whether any of the PS methods would 
perform better under these conditions. 

 
The explored propensity score methods including weighting, covariate adjustment, and the match 
methods.  The weighting option incudes weighting by IPTW, SIPTW, and SMRW. The covariate 
adjustment options are propensity score, LPS, IPTW, SIPTW, and SMRW.  Note that the last four 
covariate adjustment options have not been found previous studies.  Furthermore, neither the 
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weighting method nor the covariate adjustment method has been applied, evaluated, or explored, 
for road safety studies.  
 
The optimal PSD matching with maximum variable ratio of 5 and the NN MD matching with 1 
replacement correctly identified the true effects, but the former has most number of the matched 
control sites and provides much better results. The important findings from this study are as 
following: 

1. The NN MD matching with 1 replacement and the optimal matching by propensity 
score correctly identify the true effects. 

2. The optimal PSD matching with max variable ratio of 5 has the most number of 
matched control sites and provide the best CMF estimates 

3. The NN PSD matching with 5 replacements has the least number of matched control 
sites and is the worst method for CMF estimates 

4. The optimal MD matching with max variable ratio of 5 does not perform as well as the 
NN MD matching with 5 replacements. 

5. The mixed-effects has the better results than the NB models in terms of better estimate 
for the mean values and smaller stand errors. 

6. Weighting by IPTW and SMRW as well as covariate adjustment by LPS, IPTW, and 
SIPTW generated similar or better CMFs than the EB method. 

 
Based on the findings, we recommend the optimal PSD matching for the CMFs evaluation.    
However, we cannot conclude that this method will always perform better the EB method. It is 
worth mentioning that there are some approaches that can be applied to the traditional EB method 
when significant differences exist between the treated before and reference sites, i.e. include the 
before period data for the SPF developments. Future studies may compare this approach with the 
PS methods.  The weighting by IPTW and SMRW as well as the covariate adjustment by LPS, 
IPTW, and SIPTW are also suggested for further explore using different simulated datasets as 
these five methods consistently have similar or better CMFs than the EB method using the two 
datasets. 
 
There are some options that could be explored in future studies.  They are sensitivity analysis on 
the number of replacements, and the without replacement option for the NN matching method, and 
various maximum variable ratios for the optimal matching.  More simulated datasets are certainly 
needed to confirm our findings.  
 
Although there were a few CMFs evaluations using the propensity score matching methods for 
road safety studies, to the authors’ knowledge, the recommended optimal PSD matching method 
has not been evaluated in road safety studies. In addition, very few studies have evaluated the 
various propensity score methods included in this study.  It is our hope that this study provides 
useful insights that could be used for better CMFs evaluations. 

 



 

Bo	Lan and Raghavan	Srinivasan  35 

REFERENCES	
 
 
 
1. FHWA (2014), Crash Modification Factors in Practice, Report FHWA-SA-13-017, 

http://safety.fhwa.dot.gov/tools/crf/resources/cmfs/docs/product_summary_final.pdf 

2. Hauer E. . Observational Before-after Studies in Road Safety: Estimating the Effect of 

Highway and Traffic Engineering Measures on Road Safety, Pergamon Press, Elsevier 

Science Ltd, Oxford, U.K. 1997. 

1. Gross, F., Persaud, B., and Lyon, C. (2010), A guide to developing quality crash 

modification factors, Report FHWA-SA-10-032, Federal Highway Administration. 

2. Carter, D., Srinivasan, R., Gross, F., and Council, F. (2012), Recommended protocols for 

developing crash modification factors, NCHRP Project 20-07 (Task 314), National 

Cooperative Highway Research Program, Washington, D.C. 

3. Miaou, S.P., Lum, H., 1993. Modeling vehicle accidents and highway geometric design 

relationships. Accident Analysis and Prevention 25 (6), 689–709. 

4. Persaud, B., Craig, L., Kimberly. E., Nancy, L., Frank, G., 2009. Safety evaluation of offset 

improvements for left-turn lanes. FHWA-HRT-09-035. 

5. Donnell, E. T., R. J. Porter, and V. N. Shankar. Framework for Assessing the Safety Effects 

of Roadway Lighting. Safety Science, Vol. 48, No. 10, December 2010, pp. 1436-1444.  

6. Donnell, E.T., Gross, F., 2011. Case-control and cross-sectional methods for estimating crash 

modification factors: comparisons from roadway lighting and lane and shoulder width safety 

effect studies. Journal of Safety Research 42 (2), 117–129. 

7. Austin, P. C., An Introduction to Propensity Score Methods for Reducing the Effects of 

Confounding in Observational Studies. Multivariate Behavioral Research, 46:399–424, 2011. 

8. Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an 

observational study with binary outcome. Journal of the Royal Statistical Society Series B 

1983;45(2):212–218. 

9. Donnell E., Hanks, E., Porter, R. J.,  Cook, L., Srinivasan, R., Li F., Nguyen, M., Eccles, K.  

Project A-6:  Highway Safety Statistical Paper Synthesis. FHWA, 2017 



 

Bo	Lan and Raghavan	Srinivasan  36 

10. Sasidharan, L., Donnell, E.T. (2013).  Application of propensity scores and potential 

outcomes to estimate effectiveness of traffic safety countermeasures: Exploratory analysis 

using intersection lighting data.   Accident Analysis and Prevention 50 (2013) 539–553. 

11. Wood, J. S., Gooch, J. P., Donnell, E.T. (2015).  Estimating the safety effects of lane widths 

on urban streets in Nebraska using the propensity scores-potential outcomes framework. 

Accident Analysis and Prevention 82 (2015) 180–191 

12. Wood, J. S., Donnell, E.T. (2016).  Safety evaluation of continuous green T intersections: A 

propensity scores-genetic matching-potential outcomes approach.  Accident Analysis and 

Prevention 93 (2016) 1–13. 

13. Wood, J. S., Donnell, E.T., Porter, R. J. (2016).  Comparison of safety effect estimates 

obtained from empirical Bayes before–after study, propensity scores-potential outcomes 

framework, and regression model with cross-sectional data.  Accident Analysis and 

Prevention 75 (2015) 144–154.  

14. Hauer, E., Harwood, D W, Council, F M, Griffith, M.. Estimating Safety by the Empirical 

Bayes Method: A Tutorial. Transportation Research Record, Journal of the Transportation 

Research Board, 1784, 126-131.  2002. 

15. Rubin DB. Matching to remove bias in observational studies. Biometrics 1973;29:159–184. 

16. Rosenbaum PR, Rubin DB. The bias due to incomplete matching. Biometrics 1985;41:103–

116. [PubMed: 4005368] 

17. Dehejia RH, Wahba S. Causal effects in nonexperimental studies: Re-evaluating the 

evaluation of training programs. Journal of the American Statistical Association 

18. Rosenbaum, PR. Observational Studies. 2. Springer Verlag; New York, NY: 2002. 

19. Gu X, Rosenbaum PR. Comparison of multivariate matching methods: structures, distances, 

and algorithms. Journal of Computational and Graphical Statistics 1993;2:405–420. 

20. Rosenbaum, P. R. (1987). Model-based direct adjustment. The Journal of the American 

Statistician, 82, 387–394. 

21. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in 

epidemiology. Epidemiology 2000;11:550–560. [PubMed: 10955408] 

22. Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. 

Epidemiology. 2003 Nov;14(6):680–6. [PubMed] 



 

Bo	Lan and Raghavan	Srinivasan  37 

23. Stürmer, T, Wyss, R., Glynn, R. J., Brookhart, M.A., Propensity scores for confounder 

adjustment when assessing the effects of medical interventions using non-experimental 

study designs. Journal of Internal Medicine, Volume 275, Issue 6, 2014. Pages 570–580. 

24. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling 

propensity scores in medical research: a systematic literature review. Pharmacoepidemiol 

Drug Saf. 2004;13: 841–53.  

25. Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods give similar results 

to traditional regression modeling in observational studies: a systematic review. J Clin 

Epidemiol. 2005; 58:550–9.  

26. Stürmer, T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S.2006.  A review of 

the application of propensity score methods yielded increasing use, advantages in specific 

settings, but not substantially different estimates compared with conventional 

multivariable methods. J Clin Epidemiol. 2006; 59:437–47. 

27. Haukoos JS, Lewis RJ. The Propensity Score. JAMA Guide to Statistics and Methods. 

314(15):1637-8. 2015.  doi: 10.1001/jama.2015.13480. 

28. Melissa M. Garrido, M.M., Propensity Score as a Covariate in Linear Models. JAMA. 

315(14):1521-1522. 2016 

29. Hadea, E. M. and Lu, B. 2014.  Bias associated with using the estimated propensity score 

as a regression covariate.  Stat Med.  33(1): 74–87. doi:10.1002/sim.5884. 

30. Austin PC. 2009. The relative ability of different propensity score methods to balance 

measured covariates between treated and untreated subjects in observational studies. Med 

Decis Making. 29(6):661-77. doi: 10.1177/0272989X09341755 

31. Lord, D. Modeling motor vehicle crashes using Poisson-Gamma models: Examining the 

effects of low sample mean values and small samples size on the estimation of the fixed 

dispersion parameter. Accident Analysis and Prevention 38, 751-766. 2006 

32. Lan, B., Persaud B., Lyon, C., and Bhim, R.  Validation of a Full Bayes methodology for 

observational before–after road safety studies and application to evaluation of rural signal 

conversions.  Accident Analysis & Prevention.  Volume 41, Issue 3, Pages 574-580, 

2009. 



 

Bo	Lan and Raghavan	Srinivasan  38 

33. Bhim, R. Observational Before and After Safety Study of Installing Signals at Rural 

Intersections: Using the Empirical Bayes (EB) and Conventional Methods. Ryerson 

University. 2006. 

34. Garber, N.J., Rivera, G. (2010).  Safety Performance Functions For Intersections On 

Highways Maintained By The Virginia Department Of Transportation, Final Contract 

Report Vtrc 11-Cr1.  

35. Cameron, A.C., Trivedi, P.K. Regression Analysis of Count Data.  Cambridge University 

Press, Cambridge, UK. 1998.  

36. Rubin, D. B. (2001). “Using Propensity Scores to Help Design Observational Studies: 

Application to the Tobacco Litigation.” Health Services and Outcomes Research 

Methodology 2:169–188. 

37. Stuart, E. A. (2010), Matching methods for causal inference: A review and a look 

forward. Stat Sci. 2010; 25(1): 1–21.  doi:  10.1214/09-STS313. 

 


