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1 MACROSCOPIC ANALYSIS 

1.1 Background and Objectives 

The objective of this research is to generate new ideas to collect Big Data for the macroscopic 

traffic crash analysis. There have been many efforts to assess traffic safety at various scopes such 

as zonal-level, segments, intersections or corridors. Among these scopes, macroscopic safety 

analysis focuses on traffic crash occurrence at the zonal-level and attempts to relate zonal socio-

demographic features with crash counts. In recent years, efforts to incorporate traffic safety into 

transportation planning has been made, which is termed as transportation safety planning (TSP). 

The Safe, Affordable, Flexible Efficient, Transportation Equity Act – A Legacy for Users 

(SAFETEA-LU), which is compliant with the United States Code, compels the United States 

Department of Transportation to consider traffic safety in the long-term transportation planning 

process. Most of macroscopic studies have analyzed traffic safety using planning data based on 

traffic analysis zones (TAZs). Nevertheless, it is expected that there are much more meaningful 

contributing factors for the crash occurrence at the zonal-level, and it will be helpful to find out 

zones with higher traffic crash risks and their contributing factors. For the macroscopic safety 

analysis, planning data that are used for the travel demand forecasting, or other socio-

demographic data have been used so far. Thus, it is required to try more variables from various 

sources for the specific crash types. To summarize, the key objectives are to: 

• Produce new ideas for acquisition and use of Big Data to facilitate safety assessment 

at the macroscopic level. 

• Macroscopic traffic safety analytics using Big Data 

• Visualize and analyze Big Data for various crash types using GIS techniques 

In this first year, we also present some ideas for microscopic safety analysis using big data. 
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However, the second year of the project will mostly address this issue. 

 

1.2 Data Collection 

In order to analyze traffic crashes at the macroscopic level, the research team has collected “Big 

Data” from multiple sources as shown in Figure 1.  

• Layer 1: TAZs and TADs (Traffic Analysis Districts) maps were obtained from the 

Florida Department of Transportation (FDOT) and U.S. Census Bureau, respectively. 

• Layer 2: The demographic data and socioeconomic data were obtained from the U.S. 

Census Bureau and the FDOT Central Office. 

• Layer 3: The roadway and traffic data were collected from the FDOT Transportation 

Statistics Office (TRANSTAT).  

• Layer 4: The crash data were obtained from the FDOT CAR (Crash Analysis Reporting) 

system database and Signal Four Analytics (S4A). 

 

Figure 1 Multiple Data Sources 
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1) Layer 1: Geographic boundary maps 

Three types of geographic boundary maps were collected: TAZ, TAD, and county maps. TAZs 

are used by the FDOT Central Office for statewide transportation plans. TAZs have been widely 

used for macroscopic traffic analysis since they are the only traffic/transportation related spatial 

boundaries. TADs are new and highly aggregated geographic unit for traffic analysiss. TAD may 

be useful if practitioners want to define crash pattern at a higher aggregate level. The key spatial 

characteristics of TAZs and TADs are summarized in Table 1. Considering the overall average 

TAZ area is 6.472mi2, TADs are approximately 16 times larger (103.314mi2) than TAZs. Figure 

2 and Figure 3 depict TAZs and TADs in Florida, respectively. 

Table 1 Summary of TAZ, TAD and county maps 

Geographic Units Area (mi2) No of TAZs Avg. area/TAZ 
TAZ 55,127 8,518 6.472 
TAD 61,368 594 103.314 

 

 
Figure 2 TAZ map (N=8,518) 
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Figure 3 TAD map (N=594) 

 

2) Layer 2: Demographic and socioeconomic data 

Demographic and socioeconomic data, which can serve as surrogate for traffic volumes that 

affect crash occurrence, are collected (Table 2). The demographic data such as population, 

population by race/ethnicity, and population by age group based on the census block were 

acquired from the U.S. Census Bureau. TAZ-based data were provided by FDOT Central Office, 

which are called Zone Data (ZDATA). Single Family Units (SFU), MFU (Multi Family Units), 

and HMT (Hotel, Motel, and Timeshare) data were acquired, which are very closely related to 

trip generation. Furthermore, trip attraction factors such as employments and school enrollments 

are obtained based on TAZ maps. The urban boundary map was collected from the FGDL 

(Florida Geographic Data Library) and median household income data were obtained from the 

U.S. Census Bureau. 
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Table 2 Summary of demographic and socioeconomic data 

Category Variables Base 
units 

Sources 

Demographic 

Population 
Population by race/ethnicity 

Population by age group 

Census 
block 

U.S. Census 
Bureau 

Number of SFU 
Percentage of the nonpermanent vacant in SFU 

Percentage of the single family vacant 
Population of SFU in residential area 

Number of MFU 
Percentage of the nonpermanent vacant in MFU 

Percentage of the multiple family vacant 
Population of MFU in residential area 

TAZ 
FDOT Central 

Office 

Socioeconomic 

Percentage of SFU owns no vehicle 
Percentage of SFU owns one vehicle 

Percentage of SFU owns two or more vehicles 
Percentage of MFU owns no vehicle 
Percentage of MFU owns one vehicle 

Percentage of MFU owns two or more vehicles 
Number of HMT rooms 

Percentage of HMT occupancy 
Number of HMT occupants 

Industrial Employment 
Commercial Employment 

Service Employment 
Total Employment 
School Enrollment 
Urban boundaries Polygon FGDL 

Median household income 
Block 
Group 

U.S. Census 
Bureau 

 

3) Layer 3: Roadway and traffic data 

Roadway/traffic data were collected from FDOT TRANSTAT and FDOT UBR (Table 3).  The 

roadway data includes the location of intersections and traffic signals, total roadway length, and 

roadways by speed limits. Traffic data contain AADT (Annual Average Daily Traffic) and truck 
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traffic volume. Roadway and traffic data are expected to be important contributing factors for the 

crash occurrence.  

Table 3 Summary of roadway and traffic data 

Category Variables Base 
units 

Sources 

Roadway Intersection 
Traffic signal locations 

Point FDOT 
TRANSTAT 

Total roadway length 
Roadway by speed limits 

Polyline FDOT UBR 

Traffic AADT 
Truck traffic volume 

Polyline FDOT 
TRANSTAT 

 

4) Layer 4: Crash data 

Figure 4 presents the overall process of the crash data collection from the two sources: FDOT 

CAR and S4A.Two forms of crash report are used in the State of Florida. They are short form 

and long form crash reports. Crashes reported on the long forms involve either higher injury 

severity level or criminal activities such as hit-and-run or DUI. Since only long form crashes 

have been coded and archived in FDOT’s CAR database. The research team has collected short 

form crashes from S4A. Therefore, the research team is able to use more complete crash data in 

this research project.  
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Figure 4 Crash Data Collection Process 

 

The number of crashes by severity levels, form types, and years is shown in Table 4. The number 

of injury and fatal crashes are stable across 3 years. However, it is evident that many PDO 

(Property Damage Only) crashes in 2010-2011 are under-reported compared to the number of 

PDO crashes in 2012. The possible reasons for the underreporting of PDO crashes are as follows: 

First, S4A started to collected short form crash data from all counties in Florida from 2010 

onward. However, very few short form crash data were collected in 2010 except for select 

counties. The number of reported short form crashes has significantly increased since 2011. 

Second, the crash report form has been changed in 2011, and thus it is thought that there was 

confusion in submitting crash reports. Third, The Florida Statutes regarding the crash reporting 

rules (F.S. 316.066) have been amended, and the number of reportable long form crashes has 
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increased since 2012. The amended Florida Statutes regulate that traffic crashes should be 

reported by long form if a crash: 1) resulted in death of, personal injury to, or any indication of 

complaints of pain or discomfort by any of the parties or passenger involved in the crash; 2) 

involves DUI (Driving Under the Influence or alcohol or drugs) or hit-and-run (F.S. 316.061(1) 

and 316.193); 3) rendered a vehicle inoperable to a degree that required a wrecker to remove it 

from the scene of the crash; or 4) involved a commercial motor vehicle. These possible reasons 

may increase the number of PDO reported long crashes in 2012.  The State is moving in the right 

direction and the data appear to be more complete. More PDO crashes are captured by both long 

and short forms. There is an indication that the percent of PDO crashes reported on Long forms 

is increasing. In July 2010 agencies were no longer required to submit short forms, this led to 

some agencies to change to all long forms. We are trying to use as much complete crash database 

as possible, while maintaining consistency. This is difficult as it is apparent that the changes in 

2010 and 2011 are impacting the number of reported crashes.  Up to the time of writing this 

report, the 2013 geocoded crash data were not available from FDOT. 

 

Table 4 The number of crashes by severity levels, form types, and years 

Year Severity levels Source Sum 

PDO Injury Fatal S4A CAR 

2010 147,872 122,288 2,183 15,370 256,973 272,343 

2011 169,484 102,398 2,103 53,343 220,642 273,985 

2012 241,321 111,450 2,136 99,885 255,022 354,907 

Sum 558,677 336,136 6,422 168,598 732,637 901,235 
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Figure 5 Comparison of the proportion of crashes by severity levels between long form only (left) and 

complete data (right) 

 

As shown in Figure 5 Comparison of the proportion of crashes by severity levels between long 

form only (left) and complete data (right), crash data without short form reports (long form only 

data) have 45.9% of injury crashes and 53.2% PDO crashes. On the other hand, the percentage of 

injury crashes was dropped to 37.3% whereas PDO crashes were 62.0%, which is obviously 

more reasonable. Using data with many missing PDO crashes may result in biased model 

estimation, particularly for total and PDO SPFs (no effect for injury and fatal SPFs). Therefore, 

the complete data including both short and long form data were used in this research project. 

 

Each yellow point in Figure 6 represents the location of a crash. Figure 7 shows the result of Kernel 

Density Estimation (KDE) of crashes, which defines the spread of risk as an area around a 

defined cluster in which there is an increased likelihood of a traffic crash to occur based on 

spatial dependency. As seen in Figure 4, the largest cluster is located in Miami-Dade County, 

and Hillsborough and Pinellas Counties and Orange County have the second and third largest 

PDO

53.2% 

Injury
45.9%

Fatal

0.9% 

PDO

62.0% 

Injury
37.3%

Fatal

0.7% 
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clusters, respectively. Also, Duval and Escambia Counties show the relatively high concentration 

of traffic crashes. 

 

 
Figure 6 Spatial distribution of traffic crashes (2010-2012) 



13 

 
Figure 7 Kernel density estimation of traffic crashes 
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1.3 Exploratory Analysis of the Collected Data 

The newly collected data has been processed for developing various SPFs (Safety Performance 

Functions) in this chapter. This chapter summarizes descriptive statistics and several spatial 

distributions of the collected data based on TAZs and TADs. 

1.3.1 Traffic Analysis Zones 

There are 8,518 TAZs in the State of Florida (Figure 2). TAZs cover the whole state and are used 

by FDOT Central Office for statewide long-term transportation plans. The collected data were 

processed based on TAZs and socio-demographic, roadway, and crash variables are summarized 

in Table 5,Table 6, and Table 7, respectively. Also, roadways by functional classifications and 

spatial distribution of total crashes are shown in Figure 8 and Figure 9, correspondingly. TAZs 

will be used for developing Traffic Safety Analysis Zones (TSAZs) in the following chapter. 

Table 5 Descriptive statistics for socio-demographic variables in TAZs 

Variables Mean Stdev Min Max 

Total population 2172 3007 0 38980 

Number of family unit 817 1147 0 18200 

Proportion of the nonpermanent vacant 0.107 0.091 0 0.500 

Proportion of the families vacant 0.071 0.068 0 0.500 

Proportion of families have no vehicle 0.095 0.123 0 1.000 

Proportion of families have 1 vehicle 0.372 0.146 0 1.000 

Proportion of families have 2 or more vehicles 0.490 0.205 0 1.000 

Number of HMT rooms per square mile 172.486 941.718 0 32610.839 

Total employment 1140 1722 0 31931 

Proportion of industry employment 0.176 0.232 0 1.000 

Proportion of commercial employment 0.299 0.235 0 1.000 

Proportion of service employment 0.492 0.259 0 1.000 

School enrollments per square mile 775.020 5983.006 0 255140.358 
 



15 

Table 6 Descriptive statistics for roadway variables in TAZs 

Variables Mean Stdev Min Max 

Area (mi2) 6.47 24.80 0 885.32 

Road density 9.396 28.397 0 2496.049 

Proportion of freeway/expressway 0.016 0.084 0 1.000 

Proportion of principle arterial 0.104 0.202 0 1.000 

Proportion of minor arterial 0.117 0.211 0 1.000 

Proportion of collector road 0.191 0.246 0 1.000 

Proportion of local road 0.572 0.329 0 1.000 

Proportion of roadway length with low speed 
limit 5-30 mph 0.747 0.277 0 1.000 

Proportion of roadway length with medium 
speed limit 35-50 mph 0.170 0.218 0 1.000 

Proportion of roadway length with high speed 
limit 55-70 mph 0.059 0.150 0 1.000 

Number of intersection per mile 16.699 230.370 0 8614.967 

Number of signal per mile 2.904 86.103 0 6347.763 

Number of intersection per square mile 57.081 149.704 0 4857.521 

Number of signal per square mile 8.257 47.040 0 1619.174 

Daily vehicle miles travel 31381.035 41852.293 0 684758.350 

Proportion of daily heavy vehicle miles travel 0.067 0.052 0 0.519 

Proportion of urban area 0.722 0.430 0 1.000 
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Table 7 Descriptive statistics for crashes in TAZs 

Crash variables Mean Stdev Min Max Sum % 

Total 105.80 142.25 0 1507 901235 100.0 

Incapacitating injury 5.12 7.21 0 110 43631 4.8 

Fatal 0.75 1.24 0 14 6408 0.7 

Pedestrian 1.91 3.31 0 39 16240 1.8 

Bicycle 1.80 3.31 0 88 15307 1.7 

DUI 3.82 5.06 0 86 32545 3.6 
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Figure 8 Roadways by functional classifications in TAZs 
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Figure 9 Spatial distributions of total crashes in TAZs 
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1.3.2 Traffic Analysis Districts 

Similar to TAZs, TADs (Traffic Analysis Districts) cover the whole state (Figure 3). However, 

TAD is much more highly aggregated geographic unit compared to TSAZ. TAD may be useful if 

practitioners want to define crash pattern at a higher aggregate level. The collected data were 

prepared based on TAD and processed socio-demographic, roadway, and crash variables are 

summarized in Table 8, Table 9, and Table 10, correspondingly. Moreover, population density, 

roadways by functional classifications, and total crash maps are displayed in Figure 10, Figure 

11, and Figure 12, respectively. 

Table 8 Descriptive statistics for socio-demographic variables in TADs 

Variables Mean Stdev Min Max 

Total population 103.314 260.083 2.617 3095.520 

Number of family unit 30718 35919 8 358901 

Proportion of the nonpermanent vacant 11557 12454 2 108195 

Proportion of the families vacant 0.102 0.045 0.000 0.310 

Proportion of families have no vehicle 0.065 0.034 0.000 0.286 

Proportion of families have 1 vehicle 0.077 0.065 0.004 0.544 

Proportion of families have 2 or more vehicles 0.386 0.068 0.170 0.675 

Number of hotel, motel, timeshare rooms per square mile 0.536 0.105 0.078 0.825 

Total employment 38.145 96.745 0.000 766.641 

Proportion of industry employment 16150 18159 7 157003 

Proportion of commercial employment 0.177 0.136 0.000 0.819 

Proportion of service employment 0.338 0.139 0.012 0.854 

School enrollments per square mile 0.485 0.134 0.045 0.977 
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Table 9 Descriptive statistics for roadway variables in TADs 

Variables Mean Stdev Min Max 

Area (mi2) 212.454 283.916 25.774 2685.062 

Road density 7.613 5.311 0.074 24.561 

Proportion of freeway/expressway 0.022 0.032 0.000 0.316 

Proportion of principle arterial 0.053 0.045 0.000 0.314 

Proportion of minor arterial 0.058 0.041 0.000 0.280 

Proportion of collector road 0.112 0.066 0.000 0.603 

Proportion of local road 0.755 0.108 0.077 0.935 

Proportion of roadway length with low speed 
limit 5-30 mph 0.831 0.085 0.432 0.987 

Proportion of roadway length with medium 
speed limit 35-50 mph 0.121 0.058 0.005 0.445 

Proportion of roadway length with high speed 
limit 55-70 mph 0.048 0.057 0.000 0.425 

Number of intersection per mile 1.995 1.115 0.217 7.881 

Number of signal per mile 0.121 0.126 0.000 1.363 

Number of intersection per square mile 17.895 19.765 0.130 126.392 

Number of signal per square mile 1.171 1.728 0.000 13.376 

Daily vehicle miles travel 599647 428747 38547 4632469 

Proportion of heavy vehicle 0.071 0.038 0.015 0.290 

Proportion of urban area 0.720 0.376 0.000 1.000 
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Table 10 Descriptive statistics for crashes in TADs 

Crash variables Mean Stdev Min Max Sum % 

Total 1517.23 1603.29 188 15094 901235 100.0 

Incapacitating injury 73.45 54.57 4 457 43631 4.8 

Fatal 10.79 8.13 0 77 6408 0.7 

Pedestrian 27.34 33.39 1 344 16240 1.8 

Bicycle 25.77 29.59 0 312 15307 1.7 

DUI 54.79 36.31 6 345 32545 3.6 
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Figure 10 Population density based on TADs 
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Figure 11 Roadways by functional classification in TADs 
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Figure 12 Spatial distributions of total crashes in TADs 
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1.4 Development of Traffic Safety Analysis Zones 

Basically TAZs are designed to analyze origin-destination pairs of trips generated from each 

zone. Thus, transportation planners need to minimize trips which start and end in the same zone. 

It is inferred that minimizing intra-zonal trips end up with the small size of TAZs. On the other 

hand, traffic safety analysts need to consider traffic crashes that occur inside zones. So they can 

be related to zonal characteristics with traffic safety of the zones. Therefore, it is possible that 

TAZs are too small to analyze traffic safety at macroscopic level. Moreover, the small size of 

zones makes many zones with zero crash counts, especially for rarely occurring crashes such as 

fatal crashes. The second criterion abovementioned indicates that TAZs are usually divided by 

physical boundaries, mostly arterial roadways. Considering that many crashes occur on arterial 

roads, between zones, inaccurate results will be made from relating traffic crashes on the 

boundary of the zone to only the characteristics of that zone. A simple way to overcome these 

two issues while using TAZs for safety analysis is to aggregate TAZs into sufficiently large and 

homogenous traffic crash patterns. The existing TAZs were aggregated if they meet the 

following conditions: 

• Zones are spatially contiguous; and 

• Zones have same crash rate levels 

 

All TAZs were classified into several categories based on their crash rates (crashes per square 

mile) as shown in Table 11. Subsequently, the neighboring zones with same categories are 

combined and new five zone systems were created (TSAZ1-5). The optimal zone scale for 

TSAZs (Traffic Safety Analysis zones) was determined using Brown-Forsythe (FBF) test. FBF 

test evaluates whether the variance of variables of interests (i.e. crash rates) is equal when the 

scales of zone systems change. The underlying assumption of FBF is that there is greater 
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variance in crash rates among smaller zones and a lower variance among larger zones. A high 

variance value means that the crash risks are local, whereas a low variance means that more 

global crash patterns can be captured. The optimal zone scale ensures that the variance of crash 

rates is somewhere in between. 
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Table 11 Classification of TAZs by crash rates 

No Number of 
classifications 

Classifications (based on 
percentile crash rate) Range (crash per mile) 

1 2 
Class 1: 50-100% 20000-8.122 
Class 2:  0-50% 8.120-0.000 

2 3 
Class 1: 66-100% 20000-15.614 
Class 2: 33-66% 15.609-3.751 
Class 3: 0-33% 3.744-0.000 

3 5 

Class 1: 80-100% 20000-30.249 
Class 2: 60-80% 30.229-11.978 
Class 3: 40-60% 11.975-5.260 
Class 4: 20-40% 5.258-1.616 
Class 5: 0-20% 1.615-0.000 

4 7 

Class 1: 86-100% 20000-44.702 
Class 2: 71-86% 44.690-19.305 
Class 3: 57-71% 19.296-10.660 
Class 4: 43-57% 10.658-6.058 
Class 5: 29-43% 6.056-2.879 
Class 6: 14-29% 2.878-0.952 
Class 7: 0-14% 0.951-0.000 

5 10 

Class 1: 90-100% 20000-66.773 
Class 2: 80-90% 66.681-30.249 
Class 3: 70-80% 30.229-18.126 
Class 4: 60-70% 18.102-11.978 
Class 5: 50-60% 11.975-8.122 
Class 6: 40-50% 8.120-5.260 
Class 7: 30-40% 5.258-3.118 
Class 8: 20-30% 3.116-1.616 
Class 9: 10-20% 1.615-0.548 
Class 10: 0-10% 0.546-0.000 

 

FBF statistics are calculated using the following formula: 

F"# =
D&-D

()
&*+ t-1

D&.-D+
(/0

.*+
)
&*+ N-t

           (1) 

where, ni is the number of samples in the ith zone system, N is the total number of samples for all 

zone systems, t is the number of neighborhood groups 𝑦34 is the crash rates of the jth sample 



28 

from the ith zone system, 𝑦3 is the median of crash rate from the ith zone system, and Dij= 𝑦34 −

𝑦3  is the absolute deviation of the jth observation from the ith zone system median, 𝐷3 is the 

mean of Dij for zone system i, and 𝐷 is the mean of all Dij. The test assumes that the variances of 

different zones are equal under the null hypothesis. The calculated value was obtained using an F 

distribution and α=0.1 was used to test for statistical significance. 

 

There are two steps involved in the FBF test. First, the variance between each zone system from 

TSAZ5 (N=4,907) to TSAZ1 (N=1,064) (Table 12). The largest zone system (TSAZ1) is 

compared for a total of 4 separate calculations of FBF, as shown in the FBF1 column of Table 12. 

Second, the variance between each neighborhood group from TSAZ1 to TSAZ4 and the smallest 

zone system (TSAZ5) is compared (FBF2). TSAZ5 was used as the smallest zone system instead 

of SAZ (N=8,518) since the variance of crash rates based on TAZs is very large (Standard 

deviation=3035.39), which shows the crash rates are not relevant to TAZs. A significant value of 

FBF1 implies that the zone system does not reflect the global pattern of crash data; in essence 

each zone is so small that it only captures local crash patterns. On the contrary, the significant 

value of FBF2 indicates that the zone data are not local; they are so large that local level crash 

patterns are undetectable. The zone systems between lower and upper limits identify a spatial 

scale at which local level variation is still detectable but also captures larger zonal level crash 

characteristics. 
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Table 12 Brown-Forsythe test for determining optimal zone scale 

Zone 

system 
No of zones 

Crashes per miles Brown-Forsythe test 

Mean Stdev FBF1 p-value FBF2 p-value 

TAZ 8,518 144.588 3035.390 - - - - 

TSAZ5 4,907 14.614 53.510 3.630 0.0567 - - 

TSAZ4 3,920 14.678 59.152 2.810 0.0936 0.010 0.9436 

TSAZ3 3,041 14.947 66.557 1.960 0.1617 0.060 0.8134 

TSAZ2 1,754 15.634 86.843 0.440 0.5081 1.070 0.3002 

TSAZ1 1,064 18.036 110.703 - - 3.630 0.0567 

 

The FBF test results for homogeneity of variance for crash rates under various zone scales are 

presented in Table 12. The FBF1 test statistics shows that zone systems smaller than TSAZ3 (i.e., 

TSAZ4 and TSAZ5) have significantly different variance from that of TSAZ1. Thus, zone 

systems smaller than TSAZ3 are too small to capture global crash patterns. On the other hand, 

FBF2 test statistics indicates that the zone system larger than TSAZ2 (i.e., TSAZ1) is so large that 

it cannot capture local crash characteristics. Given the result, systems with TSAZ2 and TSAZ3 

are considered optimal for macro-level crash analysis. In conclusion, TSAZ2 was chosen as the 

final TSAZ since it can minimize boundary crashes and zones without certain types of crashes. 

 

Table 13 contrasts the areas in TSAZ and TAZ. As shown in the table, the number of zones in 

TSAZ (N=1,754) is one-fifth of TSAZ (N=8,518), and the average area in TSAZ is 18.061 mi2 

whereas that in TAZ is 6.472 mi2. 

Table 13 Areas in TAZ and TSAZ 

Zone 
system 

No of zones Average 
(mi2) 

Stdev Min Max 

TAZ 8,518 6.472 24.803 0.000 885.322 
TSAZ 1,754 18.061 226.645 0.000001 9395.0400 
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Table 14 compares the crash rates in TAZ and TSAZ. The mean crash rate in TAZ is 144.588 

crashes per mile while that in TSAZ is almost one-tenth, 15.634 crashes per mile. Moreover, the 

standard deviation of crash rate in TAZ is very large, it is 3035.390. After the regionalization, the 

standard deviation of crash rate in TSAZ became 86.843. It may imply that the new zone system, 

TSAZ have more homogenous crash rates compare to TAZ. 

Table 14 Crash rates in TAZ and TSAZ 

Zone 
system Average (crash per mi) Stdev Min Max 

TAZ 144.588 3035.390 0.000 2517.986 
TSAZ 15.634 86.843 0.000 20000 

 

Table 15 contrasts the numbers and percentages of zones without crashes in TAZ and TSAZ. 

There is no big difference in the percentage of zones without total crashes before and after the 

regionalization. However, when it comes to fatal crashes, the percentage of zones without fatal 

crashes in TAZ is 63.0% while it is smaller in TSAZ (54.1%). 
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Table 15 Zones without crashes in TAZ and TSAZ 

Zone 

system 

Zones without total crashes Zones without fatal crashes 

Zones Percentage Zones Percentage 

TAZ 291 3.4% 5363 63.0% 

TSAZ 90 3.0% 1664 54.1% 

 

Table 16 compares the numbers and percentages of boundary crashes in TAZ and TSAZ. There 

are 68.2% boundary crashes in TAZ whereas there are 47.0% boundary crashes in TSAZ. In 

other words, more than 20% of boundary crashes has been reduced after the regionalization. 

 

Table 16 Boundary crashes in TAZ and TSAZ 

Zone 

system 
Boundary crashes Total crashes Percentage 

TAZ 614,671 
901,235 

68.2% 

TSAZ 423,275 47.0% 

 

Figures 1-4 compare TAZ and TSAZ maps in, Districts 2 (Jacksonville area), 5 (Orlando area), 6 

(Miami-Dade and Broward area), 7 (Tampa and St. Petersburg area), respectively. As presented 

in the Figures, the zones, especially in the urban area, are highly aggregated. 
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Figure 13 TAZ (upper) and TSAZ (lower) in District 2 – Jacksonville Area 
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Figure 14 TAZ (upper) and TSAZ (lower) in District 5 – Orlando Metropolitan Area 
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Figure 15 TAZ (upper) and TSAZ (lower) in District 6 – Miami-Dade and Broward Area 
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Figure 16 TAZ (upper) and TSAZ (lower) in District 7- Tampa and St. Petersburg Area 
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1.5 Estimation of Safety Performance Functions for TAZs 

TAZs have been widely adopted for macroscopic traffic safety analysis since they are the only 

spatial unit related transportation. One of the advantages of using TAZs is that we can directly 

use transportation planning data based on TAZs for traffic safety analysis. Table 17 presents the 

SPFs for total, severe, pedestrian, bicycle, and DUI crashes based on TAZs.  

Table 17 Safety Performance Functions (SPFs) based on TAZs 

Parameters Total Severe Pedestrian Bicycle DUI 
Intercept 0.5239 

(<.0001) 
-3.1497 
(<.0001) 

-5.3065 
(<.0001) 

-5.2053 
(<.0001) 

-3.7878 
(<.0001) 

Log of hotel, motel, timeshare 
rooms per square mile 

0.0184 
(<.0001) 

-0.0281 
(<.0001) 

0.0250 
(<.0001) 

0.0184 
(0.0022) 

0.1932 
(<.0001) 

Log of total employments 0.2513 
(<.0001) 

0.2175 
(<.0001) 

0.2888 
(<.0001) 

0.2508 
(<.0001)  

Log of school enrollments per 
square mile 

0.0483 
(<.0001) 

0.0118 
(0.0013) 

0.0434 
(<.0001) 

0.0439 
(<.0001) 

0.0101 
(0.0053) 

Proportion of collectors -0.6579 
(<.0001) 

-0.3388 
(<.0001) 

0.9312 
(<.0001)  -0.1478 

(0.0120) 

Proportion of local roads  0.2688 
(<.0001)  0.9430 

(<.0001) 
0.5341 

(<.0001) 

Log of signals per mile    0.1524 
(<.0001)  

Log of vehicle-miles-traveled 0.1228 
(<.0001) 

0.2294 
(<.0001) 

0.1788 
(<.0001) 

0.2124 
(<.0001) 

0.2504 
(<.0001) 

Proportion of heavy vehicles -1.5487 
(<.0001)  -2.3843 

(<.0001) 
-5.5383 
(<.0001) 

-2.4019 
(<.0001) 

Log of bike lane length  0.0888 
(0.0008) 

-0.1039 
(0.0015)  0.1021 

(<.0001) 

Log of sidewalk length 0.2633 
(<.0001) 

0.1002 
(<.0001) 

0.4166 
(<.0001) 

0.4169 
(<.0001) 

0.1772 
(<.0001) 

Proportion of commuters 
using public transportation 

3.6087 
(<.0001) 

0.5743 
(0.0315) 

5.9113 
(<.0001) 

3.1999 
(<.0001) 

-0.8465 
(0.0017) 

Proportion of commuters 
using bicycle 

-1.1734 
(0.0050) 

-1.0187 
(0.0319) 

1.3750 
(0.0124) 

5.7402 
(<.0001) 

1.4123 
(0.0008) 

Proportion of commuters by 
walking 

-1.1944 
(<.0001) 

-1.6823 
(<.0001) 

1.4496 
(<.0001) 

1.1972 
(0.0012)  

Log of distance to the nearest 
urban area 

-0.0462 
(<.0001) 

-0.0124 
(<.0001) 

-0.0589 
(<.0001) 

-0.1409 
(<.0001) 

-0.0181 
(<.0001) 

Over-dispersion 0.7844 0.5993 0.5762 0.6208 0.4603 
LL -44338.2 -21595.1 -12783.8 -12145.9 -18145.0 
AIC 88702.4 43218.2 25597.5 24319.9 36315.9 
BIC 88794.1 43316.9 25703.3 24418.6 36407.6 
MAD 60.74 3.66 1.42 1.36 2.36 
Adj_R2 0.435 0.368 0.418 0.398 0.432 
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1.6 Estimation of Safety Performance Functions for TSAZs 

As explained in Section 1.3, TSAZs were developed to overcome the existing TAZs. The 

estimated TSAZ SPFs for total, severe, pedestrian, bicycle and DUI crashes are summarized in 

Table 8. 

Table 18 Safety Performance Functions (SPFs) based on TSAZs 

Parameters Total Severe Pedestrian Bicycle DUI 

Intercept 0.4533 
(<.0001) 

-3.3923 
(<.0001) 

-6.8921 
(<.0001) 

-7.6585 
(<.0001) 

-4.3574 
(<.0001) 

Log of hotel, motel, 
timeshare rooms per square 
mile 

0.1197 
(<.0001)     

Log of school enrollments 
per square mile   0.1136 

(<.0001) 
0.0925 

(<.0001) 
0.0498 

(<.0001) 

Proportion of arterials    -0.4590 
(<.0001)  

Proportion of local roads 1.0929 
(<.0001) 

1.2773 
(<.0001) 

1.5750 
(<.0001) 

1.3080 
(0.0215) 

1.2475 
(<.0001) 

Log of signals per mile   0.4700 
(<.0001) 

0.4601 
(<.0001) 

0.1239 
(0.0449) 

Log of vehicle-miles-
traveled 

0.2676 
(<.0001) 

0.3709 
(<.0001) 

0.5112 
(<.0001) 

0.5722 
(<.0001) 

0.4385 
(<.0001) 

Proportion of heavy vehicles -4.2794 
(<.0001)  -5.3685 

(<.0001) 
-6.1078 
(<.0001) 

-5.3321 
(<.0001) 

Proportion of urban areas  -0.1972 
(0.0072)  0.5582 

(<.0001) 
-0.1766 
(0.0194) 

Log of bike lane length 0.5317 
(<.0001) 

0.5235 
(<.0001) 

0.3627 
(<.0001) 

0.3351 
(<.0001) 

0.4256 
(<.0001) 

Proportion of commuters 
using public transportation 

7.9379 
(<.0001) 

4.7546 
(<.0001) 

10.3840 
(<.0001) 

5.8575 
(<.0001) 

2.1931 
(0.0039) 

Proportion of commuters 
using bicycle 

-4.2149 
(0.0029)   8.6063 

(<.0001)  

Proportion of commuters by 
walking 

-4.0968 
(<.0001)     

Over-dispersion 1.2057 0.8927 0.6988 0.6865 0.5783 
LL -10570.0 -5727.2 -3586.6 -3466.3 -4924.2 
AIC 21159.9 11468.4 7191.2 6956.7 9868.3 
BIC 21214.6 11506.7 7240.5 7022.3 9923.0 
MAD 326.61 16.00 5.24 4.59 9.21 
Adj_R2 0.472 0.698 0.648 0.725 0.714 
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1.7 Estimation of Safety Performance Functions for TADs 

The research team built various SPFs for Traffic Analysis Districts (TADs). TADs are new, 

higher-level geographic entities for traffic analysis. Compared to TAZs and TSAZs, TADs are a 

much more highly aggregated geographic unit. TADs can be useful if practitioners want to 

analyze crash pattern at a higher aggregate level than TAZs. Table 19 shows SPFs for total, 

severe, pedestrian, bicycle, and DUI crashes, respectively. 

Table 19 Safety Performance Functions (SPFs) based on TADs 

Parameters Total Severe Pedestrian Bicycle DUI 
Intercept -5.7374 

(<.0001) 
0.0628 

(<.0001) 
-0.8715 
(0.0534) 

-1.1564 
(0.0294) 

-3.5760 
(<.0001) 

Natural log of hotel, motel, timeshare 
room density 

0.0359 
(0.0023) 

 0.0468 
(0.0031) 

0.0443 
(0.0126) 

 

Proportion of families with no vehicle     0.5708 
(0.0426) 

Proportion of roadway length with 
Posted Speed Limit higher than 55 mph 

    -1.2143 
(0.0055) 

Natural log of intersections per mile 0.3141 
(<.0001) 

 0.3588 
(<.0001) 

0.3891 
(<.0001) 

0.1715 
(<.0001) 

Natural Log of VMT 0.4093 
(<.0001) 

0.3579 
(<.0001) 

0.0615 
(0.0948) 

0.0820 
(0.0428) 

0.2992 
(<.0001) 

Proportion of urban area 0.3020 
(<.0001) 

-0.2571 
(<.0001) 

 0.3980 
(<.0001) 

-0.1803 
(0.0098) 

Natural log of bike lane length    0.0708 
(0.0027) 

 

Natural log of sidewalk length 0.0786 
(<.0001) 

0.1105 
(<.0001) 

0.1803 
(<.0001) 

 0.1976 
(<.0001) 

Natural log of number of total 
commuters 

0.3020 
(<.0001) 

0.3739 
(<.0001) 

  0.2218 
(<.0001) 

Proportion of commuters using public 
transportation 

  0.1849 
(<.0001) 

0.1339 
(<.0001) 

 

Proportion of commuters using bicycle    0.1958 
(<.0001) 

 

Proportion of commuters by walking   0.1017 
(<.0001) 

  

Over-dispersion 0.1400 0.2177 0.2103 0.2528 0.1579 
LL -4445.9 -2940.0 -2210.2 -2204.6 -2625.7 
AIC 8907.7 5894.0 4436.4 4427.3 5269.4 
BIC 8942.8 5924.7 4471.5 4466.7 5308.9 
MAD 447.82 30.74 10.75 10.56 18.22 
Adj_R2 0.755 0.492 0.636 0.584 0.498 
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1.8 Hot Zone Identification 

The PSI (Potential for Safety Improvement), or excess crash frequency, is a measure of how 

many crashes can be effectively reduced for a particular site and is suggested in the Highway 

Safety Manual (AASHTO, 2010). The PSI for each zone is the difference between the expected 

crash count and the predicted crash count. A hot zone in this study is defined as a zone with top 

10% highest PSI.  

 

The identified hot zones for total crashes are displayed in Figure 17. As shown in the figure, 

most of the hot zones are located in urban area with some exceptions. Figure 18 depicts the hot 

zones for severe crashes. Different from total crash hot zones, severe crash hot zones are more in 

rural areas rather than urban areas. Figure 19 shows the location of pedestrian crash hot zones. 

Including some areas in Miami-Dade County, they are mostly placed in urban or suburban areas. 

It is thought that these locations are related to residential land-use. Figure 20 presents the bicycle 

crash hot zones. It is interesting that the identified bicycle hot zones are quite similar to those in 

the pedestrian hot zones. Lastly, Figure 21 displays the DUI crash hot zones. It seems they are 

more concentrated in rural or suburban areas. However, it was shown that Tampa and St. 

Petersburg areas are dangerous for DUI crashes. It is worthy to note that the far south area, 

Everglades and Key West areas were classified as hot zones for all crash types. Possibly it is 

because there are many tourists in these areas, who are more likely to be vulnerable to traffic 

crashes. 
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Figure 17 Hot zones for total crashes 
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Figure 18 Hot zones for severe crashes 
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Figure 19 Hot zones for pedestrian crashes 
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Figure 20 Hot zones for bicycle crashes 
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Figure 21 Hot zones for DUI crashes 
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1.9 Summary and Conclusion 

This chapter aims to produce new ideas for collecting and utilizing Big Data to explore traffic 

crashes at the macroscopic level. In order to achieve the objective, the research team tried to 

acquire all available various data as follows: 

• Layer 1: boundary maps (TAZs and TADs)  

• Layer 2: socio-economic data  

• Layer 3:  roadway and traffic data  

• Layer 4: crash data 

 

The collected data were processed for developing safety performance functions based on TAZs 

and TADs. Several contributing factor were found to be statistically significant for traffic crashes. 

It was found that significant variable sets were quite different by crash types. Subsequently, a 

series of screening analyses were conducted for the five crash types based on TADs. The PSIs 

(Potential for Safety Improvements) were calculated by subtracting the predicted crash counts 

from the expected crash counts. Thus, the PSI stands for the number of crashes can be effectively 

reduced. A hot zone in this study is defined as a zone with top 10% highest PSI. This chapter 

suggests what types of data can be collected and how we can utilize these “Big Data” for 

macroscopic traffic safety analysis. It is expected that more various and larger Big Data will 

contribute more reliable and meaningful results. 
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2 MICROSCOPIC ANALYSIS 

Compared with the "Big Data" used for macroscopic analysis, "Big Data" for microscopic 

analysis is "Big" because of the continuous detection manner in which the data are collected and 

the level of details that the collected data contains. The continuously collected data enlarge the 

data sample size quickly. Meanwhile, different data sources drastically increase the data 

dimension. The datasets are so large and complex that traditional data processing tools cannot 

handle them efficiently. Data mining is an analytic process which is applied to explore big data, 

with the target to find the relationship between variables, predicting and classifying events, etc. 

Thus, several types of data mining methods were used in the microscopic analysis.   

 

2.1 Data Collection 

In total, four types of data were collected, namely traffic data, Dynamic Message Signs (DMS) 

data, roadway geometric characteristics data and crash data. The detailed information of these 

four datasets is as follows, 

 

1) Traffic data 

Traffic data are provided by Central Florida Expressway Authority (CFX), formerly known as 

Orlando-Orange County Expressway Authority (OOCEA). On their system, five expressways are 

under its operation and maintenance. Currently two traffic detection systems are deployed on the 

five expressways. The Automatic Vehicle Identification (AVI) system is installed for both 

Electronic Toll Collection (ETC) and travel time estimation. In 2013, the expressway network is 

covered by a newly introduced Microwave Vehicle Detection System (MVDS). Both of these 

two detection systems archive the traffic information continuously at one-minute interval basis. 
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Thus they serve as the major source of "Big Data" in the microscopic analysis. The data are 

collected and processed each month.  

 

2) DMS data 

There are 37 DMS installed on CFX's expressway network. These DMS can display real-time 

traveling information to motorists. They have significant potential for congestion mitigation and 

safety warning. The DMS data contain information about DMS identification, messages 

displayed and the timestamps for the messages. The DMS data are provided by CFX as well. 

Currently, one-year data from September, 2012 to September, 2013 has been collected.  

 

3) Roadway geometric characteristics data  

Roadway geometric characteristics data are collected from FDOT Roadway Characteristics 

Inventory (RCI) database. The RCI data contain comprehensive geometric information. As the 

research object for microscopic safety analysis is the CFX expressways, pertinent geometric 

information is collected and processed for the five expressways. 

 

4) Crash data 

Some issues related with the long form and short form crashes in the macroscopic analysis does 

not exist in microscopic analysis. The traffic data have been collected after July, 2012 from 

which time the S4A archives the complete long and short form crashes. Consequently, the crash 

data used for microscopic analysis are collected from S4A database. Nevertheless, in 

microscopic analysis the crash information is required to be much more precise compared to the 

macroscopic safety analysis. The S4A crash data are only coded with longitude and latitude. 
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Great effort has been made to locate these crashes on the expressways. First of all, the crashes 

whose locations contain key words of expressways are selected. Then they are assigned with 

roadway ID and milepost using a GIS network specifically developed by the research team to 

select the crashes on the expressways. The results of this selection classify the crashes to the 

mainline of expressways, ramps and toll plazas. Further analysis on each type of these lanes then 

is possible. Figure 22 illustrates the final result of the crash data selection. The dots in the Figure 

22 mean crashes. Crash data are also updated each month to keep up with the traffic data 

collection. 

 

Figure 22 Crash locations on expressways in Central Florida 



49 

2.2 Data Mining Techniques 

Data mining is one of the most widely used tools to explore data which are large and complex. It 

involves artificial intelligence, machine learning, statistics, etc. The overall goal of the data 

mining process in this study is the identification of traffic patterns which lead to high crash risk 

from a large amount of data.  Four data mining methods are used: Support Vector Machine 

(SVM), Artificial Neural Network (ANN), Classification and Regression Tree (CART) and 

Logistic Regression. A brief discussion of the data mining methods is shown below.  

 

SVM is used for classification analysis by constructing a hyperplane in a high dimensional space 

(Suykens and Vandewalle 1999). The hyperplane is chosen when it has the largest distance to the 

nearest training-data point, which means it represents the largest separation between two types of 

event. There are two types of SVM: linear and nonlinear. The choosing of SVM is based on the 

data type, e.g., linear SVM is better if data are linearly separated. The nonlinear SVM is 

achieved by applying kernel. By introducing kernel, SVM is flexible in the choice of the 

separation form and can handle the nonlinear issue (Deng et al. 2012). 

 

ANN belongs to non-parametric models that can handle nonlinear relationships between 

predictors and target variables. A network may contain several units, and the units are grouped 

into layers: multiple input layers, a hidden layer, and multiple output layers (Stapelberg 2009). 

ANN may conduct nonlinear or linear transformations for input units in the hidden layer. The 

hidden units combine the input values, then the values calculated by hidden units are combined 

at the output units. In the output units, predicted values are computed and compared with the 

target value to obtain the error function, which the ANN intends to minimize. In addition to the 
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ability of detecting complex nonlinear relationships between target and explanatory variables, the 

ANN can also detect all possible interactions between explanatory variables (Tu 1996). 

 CART uses a tree-like graph or model of decisions and their possible consequences. It targets to 

classify objects by constructing a set of if-then rules (Markey et al. 2003).  CART models with 

categorical target variable are called classification trees, and those with continuous target 

variable are called regression trees. Comparing to other data mining methods, CART can clearly 

perform variable screening or feature selection which makes the analytics easy to be interpreted. 

Meanwhile, it is flexible in handling nonlinear and noise relationship between parameters (Friedl 

and Brodley 1997). 

 

Logistic Regression has been widely used in analysis of data whose target variable is categorical 

(Washington et al. 2010).  It measures the relationship between target variables and explanatory 

variables by estimating probabilities based on a logistic function. Logistic Regression is easy for 

interpretation since the model result provides the coefficient value for each significant variable. 

The impact of each variable on odds ratio can be measured. 

 

2.3 Real-time Safety Analysis 

Accessibility of real-time traffic data from Intelligent Transportation Systems has triggered 

substantial efforts to explore their applications for better transportation system. Safety and 

mobility are often regarded as two important indicators of the system performance. Improvement 

of both safety and mobility depends on clear interpretation of their interrelationship. To achieve 

this objective, real-time traffic data show great potentials since they could reflect traffic states at 

microscopic level. The research team conducted a comprehensive investigation to evaluate the 
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relationship between mobility and safety using real-time ITS traffic data on urban expressways 

in central Florida. The expressways are heavily instrumented with traffic detection facilities 

which provide continuous monitoring of traffic mobility and precise traffic information near 

crash locations before their occurrence.  

 

In this chapter, Congestion Index was introduced to represent the traffic mobility on the 

expressways. Congestion Index is defined as the reduction in speed caused by traffic congestion. 

The higher the value, the more mobility is reduced. Congestion Index is calculated as: 

 

𝐶𝐼 =
9:;;	=>?@	AB;;CDEFGHE>	AB;;C

9:;;	=>?@	AB;;C
								𝑖𝑓	𝐶𝐼 > 0

																														0																											𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                           (2)                                  

 

Due to the SVM and ANN models lack of the capability of selecting significant variables, a 

binary logistic regression was applied to select variables. Based on the result, it was found that 

eight explanatory variables had significant impact on crash occurrence. The significant variables 

are peak hour, traffic volume by lane and speed variation at the nearest upstream station, 

Congestion Index and truck percentage at downstream station, lanes, and median and shoulder 

width. The description of these variables is shown in Table 20. 
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Table 20 Variable description 

Parameter Description 

Peak 
Peak hour indicator: 
Peak = 1: weekday 7:00 - 9:00 & 17:00 – 19:00 
Peak = 0: otherwise 

U1_lanevol Average traffic volume by lane at U1 station 

U1_spddiff Speed difference between the inner and outer lanes at U1 station 

D1_trkpct Truck percentage at D1 station 

D1_ci Congestion Index at D1 station 

Lane45 

Number of lanes on cross section per direction: 
Lane45 = 1: 4 or 5 lanes at detection location 
Lane45 = 0: otherwise 
Base level: 2 lanes 

Median Median width (ft) 

Shoulder 
Shoulder width: 
Shoulder = 1: shoulder width ≥10ft 
Shoulder = 0: shoulder with < 10ft 

 

Though machine learning and artificial intelligence models may outperform statistical models, 

SVM, ANN and CART have a limitation on providing the effects of explanatory variables in the 

target variable. However, with the sensitivity analysis, the relationship between crash risk and 

the chosen eight explanatory variables could be analyzed. Since the main objective of the study 

is to reduce the crash risk, the research team focused on the sensitivity analysis of crash events. 

For continuous variables, sensitivity analysis was conducted by changing each explanatory 

variable by a user-defined value while the other variables maintain their original value; for 

categorical variables, it was conducted by setting all their values to 0 and then 1. Then the 

trained data mining models were used to estimate the new dataset and to provide the mean 

predicted crash occurrence probability. This analysis could be used to detect the positive or 
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negative relationship between explanatory variables and crash risk for crash events. The 

sensitivity analysis of these 8 variables in four data mining models is shown in Table 21. 

Table 21 Sensitivity analysis of the explanatory variables  

Variable Changing unit 

Difference in  Mean Probability 

SVM ANN CART 
Logistic 

Regression 

Peak 0 to 1 0.025 0.000 0.000 0.020 

U1_lanevol Increase by 10 0.003 0.047 0.008 0.014 

U1_spddiff Increase by 5 -0.006 0.000 0.001 0.012 

D1_trkpct Increase by 0.1 -0.005 0.000 0.000 0.014 

D1_ci Increase by 0.1 0.007 0.001 0.040 0.056 

Lane45 0 to 1 0.015 0.003 0.000 0.040 

Median Increase by 10 -0.007 -0.052 0.000 -0.003 

Shoulder Increase by 2 -0.032 0.000 0.000 -0.029 

 

Table 21 indicates that the impact of explanatory variables on target variable varies in different 

models. SVM and Logistic Regression model show that all these eight variables have impacts on 

crash risk, among which six variables’ positive or negative relationships with the crash risk are 

identical. However, two variables’ effects on crash risk are not consistent between SVM and 

Logistic Regression model. The increasing of speed variation at nearest upstream station and 

truck percentage at the nearest downstream station result in lower crash risk in SVM, but lead to 

higher crash probability in Logistic Regression. In ANN model, four variables were found to 

have no impact on crash. They are peak hour, speed variation at the nearest upstream station, 

truck percentage at the nearest downstream station and shoulder width. The other four variables’ 

influences on the crash are consistent with SVM and Logistic Regression. It is noteworthy that 

the two inconsistent variables are not significant in ANN model. The CART model does not 
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include truck percentage at the nearest downstream station in the model, and shows the 

negligible impact of speed variation at the nearest upstream station. The different results may be 

due to different model structure and mechanism.  

 

Model performances were compared by using ROC (Receiver Operating Characteristics) Curve. 

It is one of the most useful indexes for evaluating and comparing the performance of models 

where the response variable is binary. The higher ROC value, the better fitting the model 

generates. The ROC values of the four models are shown in Table 22. 

 

Table 22 ROC of models 

Index SVM ANN CART Logistic Regression 

ROC 0.736 0.734 0.657 0.717 

 

Table 22 shows that the model performances of SVM and ANN are almost the same and are the 

best. In contrast, the CART model has the lowest ROC. The results are expected, as CART is 

only based on a series of simple rules while SVM and ANN allow interaction between variables 

and also can account for the non-linear relationship between target variable and explanatory 

variables.  

 

2.4 Summary and Conclusion 

This chapter focuses on explore the impact of traffic and geometric parameters on traffic safety 

from the microscopic aspect. Four datasets were collected. They are traffic data, DMS data, 

roadway geometric characteristics data and crash data.  
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Several contributing factors were found to be significant for crash occurrence. In order to deeply 

understand their impacts on crash risk, this study applied four data mining methods, i.e., SVM, 

ANN, CART, and Logistic Regression. Since these four models’ structure and mechanism differ, 

the sensitivity analysis showed that the impact of some explanatory variables on target variable 

varies. However, the majority of variables’ positive or negative relationships with the crash risk 

are consistent in different models. Model performances were measured by ROC. The higher 

ROC indicates better model performance. The results showed that ANN and SVM provided the 

highest ROC value, and CART was the worst model. ANN and SVM are much more 

complicated than CART, but CART is easier to be understood and calculated. When choosing 

the data mining method, both model complexity and performance should be taken into 

consideration. In future, it is expected that more microscopic data can be collected and 

implemented in microscopic safety analysis. 

 

 

 

 

.  
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