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EXECUTIVE SUMMARY 

The Highway Safety Manual (HSM) is used extensively by transportation agencies to 

identify factors contributing to safety outcomes and select countermeasures aimed at 

reducing the likelihood of crashes. Safety Performance Functions (SPFs), as the core tools 

developed in HSM, are used to estimate expected crash frequency of a network, facility or 

individual site, given the amount of traffic exposure and site attributes. Moreover, SPFs that 

can accurately estimate crashes are critical to local and state transportation agencies due to its 

ability to identify regions with potential safety concerns. While HSM SPFs are useful and are 

extensively applied by practitioners for safety countermeasure design, accurate and reliable 

prediction of crashes is constrained by several methodological issues, which can fortunately 

be addressed by fusing recent advances in methodological techniques and computational 

power. This report presents the research activities undertaken to explicitly address two 

important issues pertaining to SPFs, 1) investigating spatial heterogeneity and transferability 

of single statewide SPF, and 2) analyzing nonlinear dependencies between crash frequencies 

and key factors. By development and application of advanced econometric techniques to 

address important fundamental methodological issues, it is expected that more effective 

safety countermeasures can be evaluated to substantially reduce road traffic injuries and 

fatalities.  

First, Safety Performance Functions (SPFs) provide a basis for identifying locations 

where countermeasures can be effective. While SPFs in the Highway Safety Manual (HSM) 

were calibrated based on data from select states, calibration factors can be developed to 

localize SPFs to other states. Calibration factors typically provide a coarse adjustment—time 

and space stationarity of associations between crash frequencies and various factors is still 

assumed, implying that the SPF functional form is transferable. However, with increasing 

availability of statewide geo-referenced safety data, new spatial analysis methods, and 

increasing computational power, it is possible to relax the stationarity assumption. 

Specifically, to address spatial heterogeneity in SPFs, this study proposes relaxing SPFs 

(referring to them as Localized SPFs) that can be developed by using sophisticated geo-

spatial modeling techniques that allow correlates of crash frequencies to vary in space. For 

demonstration, a 2013 geo-referenced freeway crash and traffic database from Virginia is 
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used. As a potential methodological alternative, crash frequencies are predicted by estimating 

Geographically Weighted Negative Binomial Regressions. This model significantly 

outperforms the traditional negative binomial model in terms of model goodness-of-fit, 

providing a better and fuller understanding of spatial variations in modeled relationships. Our 

study results uncover significant spatial variations in parameter estimates for Annual 

Average Daily Traffic (AADT) and segment length. Ignoring such variations can result in 

prediction errors. The results indicate low transferability of a single statewide SPF 

highlighting the importance of developing L-SPFs. From a practical standpoint, L-SPFs can 

better predict crash frequencies and support prioritizing safety improvements in specific 

locations.  

 Second, for practical considerations and in many cases the difficulty to collect 

detailed crash-related data, AADT and segment length are often used as the main correlates 

for predicting crash frequencies on segments. Typically, crash frequencies are assumed to 

linearly depend on traffic exposure related factors which may not realistically represent the 

underlying complexity embedded in crash data generated by physical and social elements of 

transportation systems. Thus, the objective is to investigate and quantify nonlinear 

dependencies of crash frequency on traffic exposure related factors. Using crash data 

collected on rural two-lane two-way roads in Tennessee, total crashes and total injury crashes 

were modeled using Negative Binomial Generalized Additive Models (NBGAMs) that are 

well-suited for conceptualizing non-linear relationships. In addition, including too few 

explanatory factors (such as AADT and segment length only) in crash frequency modeling 

may lead to omitted variables bias, and in such cases the nonlinearity may be an outgrowth of 

missing information on important variables. To address this issue, additional data on 

important correlates are collected and incorporated in NBGAM framework. The modeling 

results show that the relationship between crash frequencies (total crashes and total injury 

crashes) and AADT is clearly non-linear. Importantly, the non-linear dependency of crash 

frequencies on segment length is more complex than its dependence on AADT. The 

goodness of fit measures indicates the promising potential of NBGAMs in approximating 

non-linear dependencies of crash frequencies on associated factors. Important practical 

implications of results are presented with respect to rural two-lane two-way road safety. 
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Overall, by addressing important fundamental methodological issues pertaining to 

HSM SPFs, the research activities have focused on application of new frameworks that 

contribute to methodological enhancements of Highway Safety Manual procedures. During 

the reporting period, the above mentioned activities led to preparation of two full-length 

research papers, which will be submitted for publication and presentation review. 

1. Liu J., A. Khattak, B. Wali, Do Safety Performance Functions Vary Across Space? 

Application of Geographically Weighted Regressions. To be submitted to a transportation 

conference and a safety journal for publication review. 

2. Khattak A., B. Wali, X. Li, Exploring Non-Linear Dependencies in Correlates of Roadway 

Crashes. To be submitted to a transportation conference and a safety journal for publication 

review. 
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1. DO SAFETY PERFORMANCE FUNCTIONS VARY ACROSS SPACE? 

Application of Geographically Weighted Regressions1 

1.1. INTRODUCTION 

The Highway Safety Manual (HSM) is extensively used by transportation agencies to identify 

factors contributing to safety outcomes and select countermeasures aimed at reducing the 

likelihood of crashes (1). Safety Performance Functions (SPFs), as the core tools developed 

in HSM, are used to estimate expected crash frequency of a network, facility or individual 

site, given the amount of traffic exposure, i.e., traffic volume. Moreover, SPFs that can 

accurately estimate crashes are critical to local and state transportation agencies due to its 

ability to identify regions with potential safety concerns (2). Since crash 

occurrence/frequency and the associated under- and over-dispersion in crash data can vary 

significantly across jurisdictions, it is important to calibrate HSM SPFs for specific 

jurisdictions (3). The need for calibrating HSM SPFs to specific jurisdictions is clearly 

recognized by the American Association of State Highway and Transportation Officials 

(AASHTO) due to variations in factors associated with safety. Such factors include road 

geometry and conditions, environmental factors, geographic characteristics, crash 

characteristics, reporting thresholds, all of which can be unique to specific jurisdictions (1).  

From a methodological perspective, given the count nature of crash frequencies, 

Poisson and Negative Binomial regression models are used as state-of-the-art for 

developing jurisdiction-specific SPFs (1, 4, 5). However, the aforementioned modeling 

techniques generally assume time and space stationarity of crash frequencies and the 

factors that may be associated with crash frequencies. For instance, a single coefficient is 

estimated for the relationship between Annual Average Daily Traffic (AADT) and crash 

frequency for the entire jurisdiction. Despite the fact that jurisdiction-specific SPFs (as 

compared to HSM SPFs) can better represent local conditions at hand, traffic crash 

                                                 
1Material in this section is based on: Liu J., A. Khattak, B. Wali, Do Safety Performance Functions 

Vary Across Space? Application of Geographically Weighted Regressions. To be submitted to a 

transportation conference and a safety journal for publication review. 
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frequencies and associated factors (such as traffic volumes) can vary significantly across 

similar, or even identical, road geometry and conditions within the jurisdiction where a 

single SPF is estimated (6). For instance, crash data and associated factors (such as traffic 

volumes) are location-referenced, and this along with the spatiotemporal nature of traffic 

crashes and spatial dependence between crash observations, can result in spatial 

heterogeneity in the relationships that are modeled (7-11). In addition to this, for ease of 

practical applicability, both HSM SPFs and a majority of jurisdiction-specific SPFs developed 

by many local agencies have AADT and segment length as two critical explanatory variables. 

Many factors that are likely to contribute to crash frequency are not observable, or 

unknown from the data at hand. Methodologically, as explained in Mannering and Bhat (12) 

and Mannering et al (13), the presence of unobserved factors and its correlation with 

observed factors (such as AADT and segment length) can ultimately result in important 

issues related to unobserved heterogeneity and/or Parsimonious vs. Fully Specified Models, 

potentially resulting in highly inconsistent and biased parameter estimates.  

Using geo-referenced safety data, the present study aims to address spatial 

heterogeneity (or variation) in freeway crash data by proposing relaxed SPFs (referred to as 

Localized SPFs), which allow the associations between crash frequencies and correlates to 

vary in space. Note that unobserved heterogeneity (resulting from several unobserved 

factors) in crash frequency modeling has been successfully captured through random-

parameter models (14-16). However, we posit that crash data are increasingly location-

referenced, and therefore we should explicitly utilize geo-referenced component of crash 

data to capture spatial heterogeneity. Thus, from a methodological standpoint, as we will 

demonstrate, the possibility of accounting for spatial heterogeneity by allowing some or all 

parameters to vary spatially. 

 

1.2. LITERATURE REVIEW  

1.2.1. Methodological alternatives 

For decades, researchers have used a wide variety of rigorous statistical tools in order to 

seek better understanding of factors associated with crash frequencies. While a wide 
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variety of statistical methods have appeared, a thorough review of literature reveals 

Poisson and Negative Binomial/Poisson-Gamma as the two potential state-of-the art 

alternatives (1, 17). For a complete review of various methodological challenges, issues and 

modeling alternatives, see Lord and Mannering (17).  

A few recent studies have explicitly focused on SPF transferability issues by 

examining the viability of national level SPFs for local jurisdictions (18-20). Specifically, by 

using various statistical measures such as transfer index, Poisson-Gamma and Bayesian 

averaging approaches, the studies have concluded superior transferability potential of 

estimated models by using data from different states (19) and different countries (18, 20). 

In addition to calibration factors (discussed below), a recent study by Farid et al proposed 

Modified Empirical Bayes to improve transferability of SPFs to local jurisdictions (19).  

  
1.2.2. Calibration of SPFs 

Several researchers have successfully attempted to implement and calibrate HSM crash 

prediction models/SPFs by using jurisdiction-specific data in various states including (out of 

many) Louisiana, Texas, Oregon, Illinois, Missouri, Utah, South Dakota, and North Carolina 

(4, 21-27). The results from these studies collectively document, as recommended by HSM 

too, that customized state-specific models/SPFs outperform the HSM SPFs in predicting 

state-specific crash frequencies.  

 
1.2.3. Jurisdiction-specific Freeway SPFs and Calibration factors 

A detailed methodology for prediction of crash frequencies on freeway segments is 

(currently) not officially included in HSM. However, Appendix C of HSM presents a proposed 

chapter for freeway crash prediction (1, 23). A relatively broad study by Sun et al. (23) 

investigated HSM default SPFs for a wide variety of roadway types including rural two-lane 

undivided segments, rural multilane divided segments, urban arterials, freeway segments, 

urban signalized intersections, and urban unsignalized intersections (23). The results 

indicate that, for rural four-lane freeway segments, the number of property damage only 

(PDO) crashes (both single- and multiple-vehicle) observed in Missouri were greater than 
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the predicted crashes by HSM SPFs (23). Contrarily, fatality and injury crashes were over-

predicted by HSM SPFs (23). The calibration of HSM SPFs using data from North Carolina 

resulted in similar outcomes (4). Jurisdiction-specific SPFs for 16 roadway types including 

rural and urban freeways were estimated due to significant over- and/or under-prediction 

of actual crashes by HSM SPFs (4). The results obtained from afore-mentioned studies may 

be an outgrowth of the fact that crash characteristics, environmental factors, and 

geographic factors of different jurisdictions vary substantially than those for which the HSM 

SPFs are originally developed.  

Kweon and Lim (2) developed SPFs for 14 freeway and multilane highway segments 

in Virginia. The study concluded that default HSM SPFs do not properly represent the actual 

relationship between crash frequencies and AADT on Virginia multilane highways and 

freeways (2). To explicitly address the issue of spatial non-stationarity in the associations 

between several variables and crash frequency, recent studies have used Geo-spatial 

modeling techniques (6, 9). For instance, Xu and Huang (9) addressed spatially 

heterogeneous associations between key correlates and crash frequency by using random-

parameter negative binomial and Geographically Weighted Poisson regressions (GWPR). By 

using statewide data from Florida, the study modeled total crash frequency as a function of 

intersection/road length density, population density, median household income, and 

percent of road segments with different speed limits, and concluded superior statistical 

performance of GWPR in capturing spatial non-stationarity as compared to random-

parameter negative binomial model (9). Likewise, the study by Rhee et al (6) investigated 

spatially correlated traffic crashes and associated correlates through advanced spatial 

modeling techniques. The results showed superior statistical performance of GWR in 

capturing localization of correlates.  

Studies provide valuable insights for understanding spatially varying associations 

between disaggregate level variables and crash frequency. However, strictly from the HSM 

crash prediction framework perspective, the studies did not focus on modeling spatially 

non-stationary relationships between AADT, freeway-segment length, and crash frequency. 
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Moreover, traffic exposure (such as AADT and segment length) are considered key 

predictors of crash frequencies and are widely used by transportation professionals for 

predicting crash occurrence at a particular site. Thus, in context of SPFs, an understanding 

of spatially varying relationships between key exposure factors and crash frequencies has 

significant potential to develop localized-SPFs that can potentially make more accurate 

crash predictions at individual sites.  

 

1.3. METHODOLOGY  

To explore transferability (spatial stability) of global SPFs to specific jurisdictions, this study 

proposes application of Localized SPFs (L-SPFs) that are developed using geospatial 

modeling techniques. As a promising methodological approach, Geographically Weighted 

Negative Binomial Regression (GWNBR) model is estimated and it is compared with the 

conventional (fixed parameter) negative binomial model. GWNBR models can test whether 

a relationship is stable or it varies substantially over space. By exploiting the growing 

amount of geo-referenced data and modern computational power, the L-SPFs developed 

through rigorous geo-spatial modeling techniques are able to account for spatial 

heterogeneity, which is reflected in the variation of relationships between crash frequency 

and associated factors.  

 The focus of this study is to suggest methodological advances to HSM procedures, 

which is timely and original given the high levels of safety costs and the need to implement 

effective countermeasures. The L-SPFs are important in prioritizing the safety 

improvements for specific roadway locations if the spatially varying patterns highlight 

serious and significant risks at these locations. The advantage of L-SPFs is that more realistic 

predictions of crashes can be obtained that can better identify hazardous sites, and 

appropriate countermeasures can be developed. To the best of our knowledge, base crash 

frequencies as a function of AADT and segment length have not been estimated using 

rigorous spatial tools such as GWNBR. Note that GWNBR provides the mechanism for 

making base crash frequency predictions that are customized to specific locations. The 

proposed spatial framework has the potential to change the current state of practice, i.e. 
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calibration of global models used in HSM to match local conditions. Given that expected 

number of crashes (at base conditions) at various sites can be determined more accurately 

with the proposed methodology, the need for current HSM calibration procedure can 

diminish or be eliminated altogether.  

1.3.1. Data  

This study used a statewide crash database to demonstrate the development of Localized 

SPFs. The data was obtained from the Virginia Department of Transportation (VDOT). It 

includes all types of traffic crashes that occurred within the Commonwealth of Virginia in 

2013. The crash database contains individual crashes reported using the Virginia Police 

Crash Report. As mentioned earlier, the scope of this study is limited to freeway segments, 

and the SPFs are for crash frequency, therefore all freeway crashes in the databases were 

counted for homogeneous freeway segments, which are defined and divided in VDOT’s 

traffic count data program (http://www.virginiadot.org/info/ct-trafficcounts.asp). The 

freeway crashes are linked with the freeway segments through two pieces of information 

that are available in both datasets: 1) the mile post and 2) geo-coordinates (longitude and 

latitude), as some crashes were reported with either of them, or both. Note that, crash 

observations with missing geo-referenced information were removed from the traffic 

counts for homogeneous freeway segments. In addition, the underreported crashes due to 

the small or minimal damage may also cause the crash count missing or under-counted for 

some segments. After data reduction (limited to freeway segments) and data cleaning 

(removing observations with missing information), this study analyzed traffic crash 

frequencies for 2,116 homogeneous freeway segments, and 15,426 crashes were counted 

for these segments. Note that the coefficient of variation (CV) (standard deviation/mean) of 

observed crash data is 2.12 that highlights significant over-dispersion in the data, and 

utilizing a one-size-fits-all sample-size of 30-50 segments (as recommended by HSM) may 

not be appropriate (3). According to the study by Shirazi et al. (3), in order to fulfill 90% 

confidence level for crash data with CV around 2.2, the study recommended a minimum 

sample size of 1,000 segments, and thus a relatively larger sample size (N = 2,116) is used in 

http://www.virginiadot.org/info/ct-trafficcounts.asp
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the current study.  Table 1 presents the descriptive statistics of variables used in standard 

SPFs (crash frequency, traffic volume and segment length). In HSM, the log-transformation 

of traffic volume and segments is used in safety performance functions, as provided in Table 

1. Figure 1 shows: (a) traffic volume of freeways in Virginia (denoted by the width of lines); 

(b) the spatial distribution of individual crashes (one point indicating one single crash) and 

spatial density; and (c) the spatial distribution of crash frequency on freeways across 

Virginia. 

Table 1 Descriptive Statistics of Key Variables in 2013 Virginia Crashes on Freeways 

Variable Valid N Mean Std. Dev. Min Max 

Crash Frequency 2,116 7.290 15.504 0 184 

Traffic Volume (AADT) 2,116 42610.70 51272.94 30 255000 

Segment Length (mile) 2,116 1.169 1.557 0.020 9.390 

Ln (AADT) 2,116 9.611 1.767 3.401 12.449 

Ln (Segment Length) 2,116 -0.643 1.286 -3.912 2.240 

Notes: 

1. AADT = Annual Average Daily Traffic 

2. Std. Dev. = Standard Deviation 
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Figure 1 Spatial distribution of freeway traffic volumes, freeway spatial crash density, and 

freeway crash frequency 

 

1.3.2. Standard SPF – Negative Binomial Model 

As recommended by HSM, the standard or most common form of a SPF for roadway 

segments is described below (1, 2, 4): 
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𝑁𝑆𝑃𝐹 = 𝐿 × e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)  or   𝑁𝑆𝑃𝐹 = e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+ln (𝐿)   (1) 

 

Where 𝑁𝑆𝑃𝐹 is the predicted number of crashes on a segment; 𝐿 is the length of the 

segment; 𝐴𝐴𝐷𝑇 is annual average daily traffic volume; 𝑎 and b are regression coefficients 

to be estimated using historical crash data. In Equation (1), the segment length L is included 

as a multiplier, which assumes that the crash frequency on a segment is simply proportional 

to the segment length. However, this assumption may be inappropriate in some cases. 

Traveling on a road segment, a driver experiences homogeneous road conditions (including 

the number of lanes, the shoulders, etc.)  

Driving on a relatively longer road segment with unchanging circumstances may be 

different from driving on a relatively shorter road segment with frequent variation of 

circumstances. Therefore, another common form of SPFs is also suggested by 

transportation professionals: 

 

𝑁𝑆𝑃𝐹 = e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇)+𝑐×ln (𝐿)    (2) 

 

Where c is a parameter indicating the relationship between crash frequency and segment 

length. If the estimate of c is close to 1, then the Equation (2) is identical to equation (1). If c 

is significantly different from 1, then it shows that the road segment length is not simply 

proportional in relation to crash frequencies.  

Multiple regression models are estimated, providing parameters (a, b and c) of the 

SPFs. It is assumed, in HSM, that crash frequencies follow a negative binomial (NB) 

distribution (1, 4). The negative binomial distribution is an extension (capturing over-

dispersion) of the Poisson model (5): 

  

𝑌𝑖~ 𝑁𝐵 (𝑁𝑆𝑃𝐹 𝑖, 𝛼)  (3) 
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Where 𝑌𝑖 is the observed crash frequency on a segment; 𝑁𝑆𝑃𝐹 𝑖 is the expected crash 

frequency; and 𝛼 is the NB over-dispersion parameter. A larger value of 𝛼 implies greater 

over-dispersion in data. If 𝛼 = 0, then the data follows a Poisson distribution (where mean = 

variance). In such a situation, the Poisson and Negative Binomial model provide identical 

estimates of parameters (a, b and c). If 𝛼 is significantly greater than 0, a NB model is 

preferred. Formally, 𝑁𝑆𝑃𝐹 𝑖 can be viewed as a log link function of a set of independent 

variables:   

 

𝐿𝑛 (𝑁𝑆𝑃𝐹 𝑖) = 𝑎 + 𝑏 × ln(𝐴𝐴𝐷𝑇𝑖) + 𝑐 × ln (𝐿𝑖) 

(4) 

 

To reflect the localization of highway safety performance, separate SPFs can be 

developed for each jurisdiction through regressing the local crash data on local traffic 

volumes and segment lengths (or by using HSM calibration procedures). However, the 

parameters a, b and c may vary across jurisdiction-specific SPFs, but they are assumed to be 

stationary within a jurisdiction.  

1.3.3. Localized SPF – Geographically Weighted Negative Binomial Regression 

To overcome the borders of jurisdictions while developing the SPFs to reflect the local 

roadway conditions, this study used a geo-spatial modeling technique to examine spatial 

heterogeneity in highway safety performance simultaneously. The technique produces SPFs 

that are Localized (i.e., L-SPFs) in continuous space rather than discrete space of 

jurisdictions. Geographically Weighted Negative Binomial Regression (GWNBR) was 

employed in this study. GWNBR assumes spatial non-stationarity and allows different 

associations (i.e., parameters a, b and c) to exist at different observations in continuous 

space. In the process of GWNBR, there is a local NB model estimated for each observation’s 

site based on a subgroup of observations, which are geographically centered at the location 

of a target observation. Observations for the local NB models are selected based on their 

geographical distance to the target observation (i.e., the central observation). GWNBR has a 

form that is an extension of the traditional NB model, Equation (4). The form can be viewed 

as L-SPFs written as (28): 
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𝐿𝑜𝑔 (𝑁𝑆𝑃𝐹 𝑖) = 𝑎(𝑢𝑖, 𝑣𝑖) + 𝑏(𝑢𝑖, 𝑣𝑖) × ln(𝐴𝐴𝐷𝑇𝑖) + 𝑐(𝑢𝑖, 𝑣𝑖) × ln (𝐿𝑖) (5) 

 

Where, 𝑎(𝑢𝑖, 𝑣𝑖), 𝑏(𝑢𝑖 , 𝑣𝑖) and 𝑐(𝑢𝑖, 𝑣𝑖) are the estimates of the local parameters in L-SPFs 

for ith road segment whose location is denoted by (𝑢𝑖, 𝑣𝑖). Subgroup observations in local 

NB models are assigned according to their spatial distance to the central observation (28). 

Adaptive bi-square function is often used to determine weights for each observations (28): 

 

𝑤𝑗(𝑢𝑖, 𝑣𝑖) = (1 − (
𝑑𝑖𝑗

𝑑𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
)

2

)

2

 
(6) 

 

Where, 𝑤𝑗(𝑢𝑖, 𝑣𝑖) is the weight for jth observation within the subgroup, which is centered at 

ith road segment in the overall sample (e.g., nationwide, statewide or any jurisdictional 

region); 𝑑𝑖𝑗 is the geographical distance of jth observation from the center of the subgroup 

(i.e., the location of ith road segment);  𝑑𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is bandwidth of the subgroup, equal to 

the geographical distance of the farthest observation within the subgroup from the center. 

There are m observations in each subgroup, j = 1, 2, …, m, and m <= n where n is the total 

number of observations. Though GWNBR is better at untangling the spatial variations across 

the space, the modeling results may show that the parameters 𝑎(𝑢𝑖, 𝑣𝑖), 𝑏(𝑢𝑖 , 𝑣𝑖)  and 

𝑐(𝑢𝑖, 𝑣𝑖) do not vary substantially across the study area. In this case, the L-SPFs developed 

based on GWNBR models are close to the traditional or global SPFs.  

1.3.4. Marginal Effects 

The marginal effects, MFX, for traffic volume and segment length were computed to 

provide intuitive interpretations of SPFs, i.e., the change in crash frequency with one-unit 

increase in traffic volume or segment length. Note that, for ease of interpretation, AADT 

and segment length are scaled: the unit increment is 1,000 vehicles for traffic volume, and 1 

mile for segment length. For standard SPFs with only one set of parameters (a, b and c), the 



 

Khattak et al. Highway Safety Manual: Spatial Heterogeneity, Transferability, & Non-Linearities in Safety Performance Functions 

  15 

average marginal effects for traffic volume and segment length were calculated by 

Equations (7) and (8):  

𝑀𝐹𝑋𝐴𝐴𝐷𝑇  =  
1

𝑛
∑(e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑖+1000)+𝑐×ln (𝐿𝑖) − e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑖)+𝑐×ln(𝐿𝑖))

𝑛

𝑖=1

 
(7) 

𝑀𝐹𝑋𝑆𝑒𝑔.  𝐿𝑒𝑛.  =  
1

𝑛
∑ (e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑖)+𝑐×ln (𝐿𝑖+1) − e𝑎+𝑏×ln(𝐴𝐴𝐷𝑇𝑖)+𝑐×ln(𝐿𝑖))𝑛

𝑖=1    (8) 

 

GWNBR generated SPFs, i.e., L-SPFs, included n sets of parameters 𝑎(𝑢𝑖, 𝑣𝑖), 𝑏(𝑢𝑖 , 𝑣𝑖),  

and 𝑐(𝑢𝑖, 𝑣𝑖), where n is the number of segments investigated in this study. The marginal 

effects were computed for each segment:  

 

𝑀𝐹𝑋𝐴𝐴𝐷𝑇,   𝑖  =  
1

𝑤𝑖𝑗
∑ (𝑤𝑖𝑗 × (e𝑎𝑖+𝑏𝑖×ln(𝐴𝐴𝐷𝑇𝑖𝑗+1000)+𝑐𝑖×ln (𝐿𝑖𝑗) −𝑚

𝑗=1

e𝑎𝑖+𝑏𝑖×ln(𝐴𝐴𝐷𝑇𝑖𝑗)+𝑐𝑖×ln (𝐿𝑖𝑗))    

(9) 

𝑀𝐹𝑋𝑆𝑒𝑔.  𝐿𝑒𝑛.,   𝑖  

=  
1

𝑤𝑖𝑗
∑(𝑤𝑖𝑗 × (e𝑎𝑖+𝑏𝑖×ln(𝐴𝐴𝐷𝑇𝑖𝑗)+𝑐𝑖×ln (𝐿𝑖𝑗+1)

𝑚

𝑗=1

− e𝑎𝑖+𝑏𝑖×ln(𝐴𝐴𝐷𝑇𝑖𝑗)+𝑐𝑖×ln (𝐿𝑖𝑗)) 

 

(10) 

1.3.5. Model Comparison 

To compare model performance of traditional NB model and GWNBR models, the log 

likelihood of models were calculated, as well as associated Pseudo-R2 and AIC (Akaike 

Information Criterion). AIC has been often used for comparing geographically weighted 

models with associated traditional models (28). A smaller AIC estimate indicated a greater 

goodness-of-fit (29). Empirically, a three point decrease in the AIC magnitude implies a 

substantial improvement in model goodness-of-fit (29). The NB model’s log likelihood at 

convergence can be obtained by calculating: 
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ln 𝐿𝑁𝐵 = ∑ (ln (Г(
1

𝛼
+ 𝑦𝑖)) − ln (Г(𝑦𝑖 + 1)) − ln (Г (

1

𝛼
) +

1

𝛼
ln (

1

1+𝛼�̂�𝑖
) +𝑛

𝑖=1

𝑦𝑖 ln (1 −
1

1+𝛼�̂�𝑖
) )   

(11) 

 

Where 𝛼 is the NB over-dispersion parameter; 𝑦𝑖 is the observed crash frequency on ith road 

segment; �̂�𝑖 is the expected crash frequency on ith road segment. The NB model’s log 

likelihood at constant (or intercept-only model), ln 𝐿𝑁𝐵,   𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, can be obtained by 

replacing the �̂�𝑖 with the overall mean of observations �̂�. For GWNBR, the log likelihood at 

convergence can be obtained by: 

 

ln 𝐿𝐺𝑊𝑁𝐵𝑅 = ∑ ∑(𝑤𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

× (ln (Г(
1

𝛼𝑖
+ 𝑦𝑖𝑗)) − ln (Г(𝑦𝑖𝑗 + 1)) − ln (Г (

1

𝛼𝑖
)

+
1

𝛼𝑖
 ln (

1

1 + 𝛼𝑖�̂�𝑖𝑗
) ) 

(12) 

Where 𝑤𝑖𝑗 = 𝑤𝑗(𝑢𝑖 , 𝑣𝑖); 𝛼𝑖 is the NB over-dispersion parameter for local NB model at 

location (𝑢𝑖, 𝑣𝑖); 𝑦𝑖𝑗 is the observed crash frequency for jth observation within the subgroup, 

which is centered at ith road segment in the overall sample, i.e. at location (𝑢𝑖, 𝑣𝑖); �̂�𝑖𝑗 is the 

expected crash frequency at location (𝑢𝑖, 𝑣𝑖). For each subgroup, there are 𝑚 observations, 

𝑚 ≤ 𝑛. The ln 𝐿𝐺𝑊𝑁𝐵𝑅,   𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, can be obtained in the same way based on Equation (12). 

The Pseudo-R2, indicating explained deviance in percent, can be obtained by: 

 

𝑃𝑠𝑒𝑢𝑑𝑜 𝑅2 = 1 −
ln 𝐿𝑁𝐵 

𝐿𝑁𝐵,   𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
   or    1 −

𝐿𝐺𝑊𝑁𝐵𝑅  

𝐿𝐺𝑊𝑁𝐵𝑅,   𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
                     (13) 

 

For traditional NB model and GWNBR models respectively. Greater Pseudo-R2 

indicates a better goodness-of-fit. AIC (Akaike Information Criterion) can be obtained by: 
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𝐴𝐼𝐶 = −2 ln 𝐿𝑁𝐵 + 2𝑘  or −2 ln 𝐿𝐺𝑊𝑁𝐵𝑅 + 2𝑘 (14) 

 

Where k is the number of parameters in the model.  

In addition, the non-stationary test was performed to compare the model estimates 

from NB and GWNBR models (28). The test is conducted to examine whether GWNBR 

estimates, 𝑎(𝑢𝑖, 𝑣𝑖), 𝑏(𝑢𝑖, 𝑣𝑖)  and 𝑐(𝑢𝑖, 𝑣𝑖), vary significantly across the space. For this, the 

differences between the upper quartile and lower quartile of estimates from the GWNBR 

modeling are calculated, along with the resulting significance of estimated parameters:    

 

𝐷𝑒𝑙𝑡𝑎

= 𝛽𝑢𝑝𝑝𝑒𝑟

−  𝛽𝑙𝑜𝑤𝑒𝑟  {
> 1.96 (𝑆. 𝐸. )  𝑎𝑛𝑑 Max. |𝑧| > 1.96,   Pass the Non − stationarity Test 

otherwise, Fail the Non − stationarity Test                                                    
 

(15) 

                                                                                                           

Where 𝑆. 𝐸. is the standard error of the estimates in traditional NB model, and |𝑧𝑖| is the 

significance z-value of the GWNBR estimates at location(𝑢𝑖 , 𝑣𝑖). If 𝐷𝑒𝑙𝑡𝑎 was more 

than 1.96 (𝑆. 𝐸. ) and Max. |𝑧| is greater than 1.96, then the non-stationarity test is passed, 

indicating that the GWNBR estimates, 𝑎(𝑢𝑖 , 𝑣𝑖), 𝑏(𝑢𝑖, 𝑣𝑖) and 𝑐(𝑢𝑖 , 𝑣𝑖), vary substantially in 

space (28); otherwise, GWNBR estimates are close to traditional or global NB estimates 

(indicating that L-SPFs do not provide additional information than traditional SPFs).  

 

1.4. MODELING & MAPPING RESULTS 

Table 2 presents the modeling results of the traditional NB model (for standard SPF) and 

GWNBR model (for L-SPFs). The NB model estimated one set of parameters a, b and c for 

the whole study area, and these parameters were assumed to be stationary within the 

study area. The GWNBR model resulted in an individual set of parameters for each segment, 

and the parameters were allowed to vary substantially across the study area.  

Both the NB and GWNBR models demonstrate a reasonable goodness-of-fit, as 

indicated by the significantly increased log-likelihood from intercept-only models as well as 
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the sizable Pseudo R2 (percent of explained deviations). The GWNBR models were found to 

have a better goodness-of-fit, in terms of the smaller AIC value (reduction >3) and greater 

Pseudo R2 (28) (29). Through the non-stationarity tests, all three parameters have 

substantial spatial variation. All the test-statistics imply that GWNBR models better explain 

the associations between traffic volume, segment length and crash frequency than NB 

model does, and the SPFs localized in space better reflect the local attributes of crash 

outcomes and they are significantly different from the standard SPF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Estimation Results of Negative Binomial and Geographically Weighted Negative 
Binomial Regressions 

P
ar

am
et

er
 

E
st

im
at

es
 

    a  c   
  Intercept Ln (AADT) Ln (Seg. Length) Alpha 

NB 

(Standard SPF) 

Estimate -12.694 1.331 0.795 0.499 

Std. Err. 0.331 0.030 0.024 0.384 
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z-value -38.302 44.362 33.703 - 

p-value 0.000 0.000 0.000 0.000 

GWNBR 

(Localized SPFs) 

Mean Est. -13.022 1.350 0.785 0.438 

Minimum Est. -15.975 0.781 0.624 0.228 

Maximum Est. -7.032 1.627 0.900 0.714 

Lower Est.  -15.587 0.924 0.690 0.266 

Upper Est. -8.495 1.591 0.874 0.637 

Delta 7.092 0.667 0.184 - 

Min. |z| 7.077 7.904 8.311 - 

Max. |z| 18.986 21.556 18.580 - 

Non-Stationarity Test YES YES YES - 

S
u

m
m

ar
y

 S
ta

ti
st

ic
s         Standard SPF Localized 

SPF Number of Observations 2116 2116 

Log-Likelihood at Intercept-only Model -5362.583 -5362.583 

Log-Likelihood at Regression Model -3797.928 -3716.559 

Pseudo R2 0.292 0.307 

AIC 7603.856 7441.118 

M
ar

g
in

al
 E

ff
ec

ts
 

    AADT (per 1,000 veh.) Segment Length (per 1 mile) 

Standard SPF 
MFX 0.142 4.111 

Std. Dev. 0.164 6.272 

Localized SPF 

Mean MFX 0.141 4.216 

Minimum MFX 0.107 1.409 

Maximum MFX 0.216 13.216 

Lower MFX 0.114 1.661 

Upper MFX 0.155 5.203 

Notes: Delta = 𝑈𝑝𝑝𝑒𝑟 𝐸𝑠𝑡. − 𝐿𝑜𝑤𝑒𝑟 𝐸𝑠𝑡.; YES = Delta > 1.96 Std. Err. and the non-stationarity test was 

passed.  

The parameter estimates of NB model and GWNBR models are in general reasonable 

and consistent with a study that developed negative binomial SPFs for Virginia’s freeway 

segments (2). Both traffic volume and segment length are positively correlated with crash 

frequency. The mean marginal effects (Table 2) of parameters in standard SPFs show that 

an increase of 1,000 vehicles is associated with a 0.14 increase in crash frequency. Whereas, 

a one-mile increase in segment length is associated with an increase of 4.11 in crash 

frequency. Note that parameter c for segment length was estimated to be less than 1, 

indicating that the crash frequency is not proportionally related to segment length 

(doubling the segment length does not mean the crash frequency will also be doubled). 

Being less than 1 implies that a longer homogenous road segment is associated with a 
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smaller number of crashes per unit segment length. In other words, if the conditions of road 

segment change less frequently along a way, less crashes per unit length may be expected.  

The GWNBR-estimated parameters have ranges that include the estimates in the NB 

model. The NB model estimates are close to the mean estimates in GWNBR models. 

Noticeably, all estimates in GWNBR models are statistically significant (|z| > 1.96).  The 

estimates of parameter a range from -15.587 to -7.032, parameter b has a range from 0.781 

to 1.627, and parameter c ranges from 0.624 to 0.9. Figure 2 presents the varying 

parameters along freeways in Virginia. The three maps in Figure 2 together provide L-SPFs 

for the entire Commonwealth of Virginia. The Localized parameters can vary across 

segments. These estimates are relatively stationary in certain regions (but not constrained 

within any specific jurisdictions). For example, the parameter a for the intercept has a 

relatively stable estimate around -8.3 in the southwest of Virginia, the estimates are greater 

-7 in the mid-west of Virginia (Roanoke, Lexington and Staunton), and east of Virginia 

(Richmond - Norfolk) was found to have relatively stable estimates lower than -15.  

The L-SPFs from GWNBR models show that the parameter for AADT has the greatest 

estimate in east of Virginia (Norfolk), around 1.60, while the Mid-west of Virginia has the 

smallest estimate around 0.80. It implies that the association of AADT with crashes on 

freeway segments is stronger in Eastern Virginia than Western Virginia. This may be 

attributed to various factors that differ in these two regions, such as the different driving 

cultures because there is a natural barrier (Blue Ridge Mountains) between these two 

regions. The parameters for segment length were found to have greater values in both 

north and south parts of Virginia, with a magnitude around 0.90. In the capital region of 

Richmond, these parameters are around 0.65, which are smaller than in other regions, 

indicating that the length of homogenous freeway segment has a smaller association with 

crashes.  
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Figure 2 Visualization of parameter estimates obtained from GWNBR model 
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1.5. LIMITATIONS 

Currently, there is no detailed methodology (to the best of our knowledge) for predicting 

crash frequencies at freeways that is officially included in HSM. This precludes the 

comparison of GWNBRs developed in this study with HSM SPFs as there is no HSM SPF for 

freeways. However, the key point is that SPFs can be easily localized using the proposed 

spatial methodology. Certainly spatial regressions cannot be used for crash frequency 

predictions at other locations, e.g., we cannot transfer the model estimated in Virginia to 

Tennessee or North Carolina (unless we find that there is no significant spatial variation). 

This said, each state will have to apply the proposed framework for their entire network for 

a specific roadway type; but this is doable, given the computational power of the tools 

available. Furthermore, this study has focused on spatial/geographic stability within a state, 

but did not address temporal stability of SPFs. Future research may examine spatial stability 

across states (see Farid et. al (19). Overall, GWNBR models are highly localized and they are 

not generalizable to other states, i.e., if the GENBR methodology is adopted by a state, then 

they will have to develop their own localized SPFs.  

 

1.6. CONCLUSIONS & IMPLICATIONS 

The current study has focused on an important methodological concern related to 

geographic stability assumed in the global or traditional negative binomial models. To 

localize SPFs in HSM, this study successfully demonstrates the application of localized 

models known as Geographically Weighted Negative Binomial Regressions. Typically, 

stability of the associations between crash frequencies and various factors is assumed. 

Given that crash data are typically location-referenced, it is possible to use geo-referencing 

along with new spatial analysis techniques to capture and quantify spatial stability. By using 

2013 geo-referenced freeway crash data from Virginia, this study estimated highly localized 

SPFs using GWNBR. L-SPFs better reflect the local conditions of roadways than jurisdiction-

specific SPFs, as their estimations consider the spatial heterogeneity among roadway 

segments. L-SPFs are estimated in continuous space at the roadway segment level and they 

are not constrained by jurisdiction boundaries.  A unique aspect of the study is that we can 
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potentially take advantage of large-scale geo-referenced accident data available for most 

states and apply new spatial analysis techniques as well as computational power to provide 

“customized” information about expected crashes and their relationships with exposure 

variables.  

Collectively, GWNBR models revealed that the parameters of freeway segment SPFs 

vary substantially across the Commonwealth of Virginia, indicating the low transferability of 

statewide SPF, which highlights the importance of developing L-SPFs. In general, the varying 

parameters of L-SPFs estimated by GWNBR models have ranges that include the stationary 

parameters in a traditional or global SPF estimated from a NB model. A standard statewide 

SPF estimated in the study is 𝑁𝑆𝑃𝐹 = e12.694+1.331×ln(𝐴𝐴𝐷𝑇)+0.795×ln (𝐿), while the three 

parameters in L-SPFs have fairly wide ranges (-15.975, -7.032), (0.781, 1.627), and (0.624, 

0.9), respectively. While the parameters in L-SPFs can vary substantially across one segment 

to another segment, the GWNBR models visualized as maps revealed that estimates are 

relatively stationary in certain regions of Virginia (these are organized spatially and not 

within any specific jurisdictions). Thus there are some regions where associations between 

crash outcomes and contributing factors are relatively stationary. To summarize, the key 

findings include:  

 Parameter a for the intercept.  Southwest of Virginia has a relatively stable estimate 

around -8.3. In the Mid-west region of Virginia (Roanoke, Lexington and Staunton), 

the estimates are around -7.  And in the Southeastern Virginia (Richmond - Norfolk) 

the estimates are lower, around -15.  

 Parameter b for AADT. Southeastern Virginia (Hampton Roads area) has a larger 

estimate around 1.60, while the Mid-west Virginia region estimates are much 

smaller than other regions, at around 0.80. This result implies that the association of 

AADT with crash frequency on freeway segments is higher in Southeastern Virginia 

than Southwestern Virginia, which may be related to the different local conditions in 

these two regions separated by a natural barrier (Blue Ridge Mountains).  
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 Parameter c for segment length.  Both north and south parts of Virginia have larger 

estimates, around 0.90, than other regions. Richmond area have the smallest 

estimate at around 0.65. This implies that the length of homogenous freeway 

segment has a stronger association with crash frequency in this region.  

The results obtained from this study have important safety implications. First, 

GWNBR provides mechanisms for making base crash frequency predictions that are 

customized to specific locations. A key advantage of L-SPFs is that more realistic estimates 

of crashes can be obtained that can better identify hazardous sites, and more appropriate 

countermeasures can be developed. Second, given that base crash frequencies can be 

predicted, the proposed spatial framework has the potential to change the current HSM 

state-of-the-practice, i.e. calibration of global or traditional Negative Binomial models used 

in HSM may not be needed. Compared to HSM which uses both Empirical Bayes (history of 

crashes and global SPFs for a site), the proposed methodology can potentially replace the 

global SPFs in HSM with a local SPF. Third, the practical aspects are the potential changes in 

the practices of HSM. Although the proposed methodology is complex compared with 

current practices, it systematically accounts for spatial variations and given this 

methodology, practitioners can have better tools to undertake more informed decisions. 

The software application is under development, in order to provide tools to various 

transportation agencies who are interested in developing their own L-SPFs with various 

specifications (i.e., different contributing factors) using their region’s crash data.  

Finally, the long-term value of this study comes from the idea of spatial 

heterogeneity, i.e. estimating local versus global models that can be applied for prediction 

of crashes. Although we found evidence of significant spatial heterogeneity within Virginia, 

at least for freeways, this does not mean that other states will have similar results. 

However, the proposed methodology can be applied in other states to obtain more 

customized and localized estimates of crash frequencies. Within this premise, large 

databases such as HSIS can be used to explore the spatially varying relationships for 

different states in the future. Though this study strictly followed the SPF development 
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procedures in HSM by analyzing only the associations between traffic volume, segment 

length, and crash frequency (based on the NB framework), the method proposed in this 

study can be easily expanded to explore more complex spatial patterns of associations 

between crash frequency and other contributing factors such as shoulder, lane width, and 

other geometric characteristics, and for different roadway types.  
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2. EXPLORING NON-LINEAR DEPENDENCIES IN CORRELATES OF ROADWAY CRASHES2 

 

ABSTRACT – For practical considerations and in many cases the difficulty to collect detailed 

crash-related data, Annual Average Daily Traffic (AADT) and segment length are often used 

as the main correlates for predicting crash frequencies on segments. Typically, crash 

frequencies are assumed to linearly depend on traffic exposure related factors which may 

not realistically represent the underlying complexity embedded in crash data generated by 

physical and social elements of transportation systems. Thus, the objective of the current 

study is to investigate and quantify nonlinear dependencies of crash frequency on traffic 

exposure related factors. Using crash data collected on rural two-lane two-way roads in 

Tennessee, total crashes and total injury crashes were modeled using Negative Binomial 

Generalized Additive Models (NBGAMs) that are well-suited for conceptualizing non-linear 

relationships. In addition, including too few explanatory factors (such as AADT and segment 

length only) in crash frequency modeling may lead to omitted variable bias, and in such 

cases the nonlinearity may be an outgrowth of missing information on important variables. 

To address this issue, additional data on important correlates are collected and 

incorporated in NBGAM framework. The modeling results show that the relationship 

between crash frequencies (total crashes and total injury crashes) and AADT is clearly non-

linear. Importantly, the non-linear dependency of crash frequencies on segment length is 

more complex than its dependence on AADT. The goodness of fit measures indicates the 

promising potential of NBGAMs in approximating non-linear dependencies of crash 

frequencies on associated factors. Important practical implications of results are presented 

with respect to rural two-lane two-way road safety.  

 

Note: The full-length paper is available from authors.   

                                                 
2Abstract is based on Khattak A., B. Wali, X. Li, Exploring Non-Linear Dependencies in Correlates 

of Roadway Crashes. To be submitted to a transportation conference and a safety journal for publication 

review. 
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