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EXECUTIVE	SUMMARY	

With the development of data and communication technologies, huge information is 

being collected and processed with the aim of understanding human behavior, making better 

decisions, etc. The huge information is called “Big Data”. Big data have brought about 

changes to human life, and transportation is one of the areas, which have been heavily 

impacted by big data. This study collected and integrated various data sources for safety 

monitoring, assessment, and improvement. The data included crash, traffic, road geometric 

design, and macroscopic data. For each type of data, different data sources were used, for 

example, traffic data were provided by Automatic Vehicle Identification sensors and 

Microwave Vehicle Detection System.  

First, the big data visualization was conducted to facilitate researchers’ understanding 

of the traffic and crash patterns on the expressway system in Central Florida. The 

spatiotemporal distribution of crashes along with traffic flow offer valued insights and can 

guide future statistical inference thus is a necessary step in Big Data analysis. Then, a 

microscopic simulation network for expressway weaving segments was built based on big 

traffic data. Its volume, speed, and safety were highly consistent with those of field traffic 

due to the high resolution of big traffic data input. Based on the well-calibrated and validated 

simulation network, real-time conflict estimations have been carried out to explore the crash 

mechanism of weaving segments. The result showed that the real-time safety analysis at 

smaller time intervals was able to provide better prediction accuracy.  

The project verified the significant impact of travel time reliability on crash frequency 

and crash types in real-time for expressway mainlines. Additionally, it recommended 
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applying different travel time reliability indexes in different safety studies. The results also 

implied that the crash mechanisms for single- and multi-vehicle crashes were not the same.  

The safety of a roadway facility is not only determined by the facility’s geometric design and 

traffic, but also it might be impacted by the macroscopic characteristics of the zone which a 

roadway facility lies in. Therefore, the macroscopic parameters were attempted in real-time 

safety analysis for ramps and in crash frequency prediction for intersections. The results 

indicated that the macroscopic parameters indeed had significant impact on safety.  

Moreover, Support Vector Machine along with logistic regression model was used in 

real-time safety analysis for ramps. The integration of the two models largely eliminated 

overfitting issue and improved model accuracy. The intersection safety analyses were carried 

out for different crash types and different macro-level spatial units. The best spatial unit was 

recommended to crash frequency estimation for each crash type.  

Finally, potential application of this project and future relevant research are also 

discussed.  
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CHAPTER	1:	INTRODUCTION	

With the development of technologies such as computer technology, Internet 

technology, and Intelligent Transportation System (ITS), huge information is collected and 

processed with the aim of understanding human behavior, making better decisions, 

increasing greater operational efficiency, reducing risk, etc. The huge information, 

characterized by variety, volume, velocity, variability, complexity, and value, is often 

referred to “Big Data” (Katal et al., 2013). Big data have already brought about promises and 

challenges to human life. Transportation is one of the fundamental elements of human life, it 

has also been heavily impacted by big data.  

In the past few decades, ITS continuously collected traffic information from different 

sources over vast scale. Meanwhile, transportation related databases were built, for example, 

geometric characteristic for each road segment. The huge size and rich transportation related 

big data could significantly enhance understanding of the efficiency and safety of 

transportation system. Additionally, Active Traffic Management (ATM) for improving 

system performance becomes possible due to the real-time nature of the big data. 

This project focuses on the safety monitoring, assessment, and improvement based on 

big data. Big data from different sources were collected and integrated. Automatic Vehicle 

Identification (AVI) and Microwave Vehicle Identification System (MVDS) are the two 

main sources for real-time traffic data. The utilization of these two traffic detection systems 

provided rich information regarding the expressway traffic conditions in real-time. Roadway 

geometric characteristics and crash data were acquired to find the relationship between 

geometric design and roadway safety. Additionally, macroscopic, which includes but not 
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limited to trip generation and land-use data, were used to explore the impact macroscopic 

parameters on traffic safety. Different roadway facilities were studied: expressway mainline, 

expressway weaving segments, expressway ramps, and intersections. 

The main objective of this study was to implement big data in traffic safety studies. 

Different data sources were analyzed and the safety of different roadway facilities were 

investigated. To be more specific, eight tasks were carried out. 

• Task 1: Visualizing big data to facilitate the understanding of traffic and 

crash patterns;  

• Task 2: Analyzing real-time conflict potential for weaving segments in 

microscopic simulation which was based on big traffic data; 

• Task 3: Exploring the impact of travel time reliability on safety from both 

crash frequency prediction and real-time safety analysis aspects. It is based on 

integrated traffic data sources: AVI and MVDS; 

• Task 4: Investigating crash mechanisms for single-vehicle (SV) and multi-

vehicle (MV) crashes, separately; 

• Task 5: Evaluating crash risk for expressway ramps with a focus of finding 

whether macroscopic data would contribute to better model performance; 

• Task 6: Integrating data mining method and traditional statistical model to 

improve the prediction accuracy for real-time safety analyses; 

• Task 7: Estimating crash frequencies for different types of intersection 

crashes based on microscopic and macroscopic data; 
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• Task 8: Recommending the optimal macro-level spatial unit for each type of 

intersection crashes.  

Following this chapter, Chapter 2 describes the data that were collected, including 

crash, traffic, road geometric characteristics, and macroscopic data. Chapter 3 carries out data 

visualization with the aims to facilitate researchers’ understanding of the traffic and crash 

patterns on the studied objects. Then, Chapter 4 takes traffic simulation as a cost-effective 

method to estimate traffic safety, and implements big traffic data in constructing a simulation 

network. The simulation network is used to conduct real-time conflict analysis. Chapter 5 

analyzes the impact of travel time reliability on SV and MV crashes, and it models the real-

time MV crash potential given a crash occurrence. Different travel time reliability indexes 

have been tried. Chapter 6 estimates real-time crash potential for expressway ramps using 

traffic, trip generation, and land-use parameters. Additionally, both data mining method and 

traditional statistical model are implemented in the real-time ramp crash analysis to provide a 

better model accuracy. Chapter 7 focuses on crash frequency analyses for intersections for 

different crash types and different macro-level spatial units. The potential safety contributing 

factors include microscopic intersection traffic data and macroscopic data. Conclusions are 

summarized in Chapter 8. 
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CHAPTER	2:	DATA	COLLECTION	AND	INTEGRATION	

This project focuses on various aspects of safety evaluation and improvement of 

roadway system using big data. Hence, the data related to traffic safety need to be collected. 

In general, primary crash factors are environmental (e.g., geometric characteristics) and 

traffic (e.g., speed, volume). Additionally, the safety of a roadway facility might be impacted 

by the macroscopic characteristics of the zone, which the facility lies in. Hence, macroscopic 

parameters, which include but not limited to trip generation and land-use factors, are also 

collected. 

2.1 Crash Data 

The raw crash data were obtained from Signal Four Analytics (S4A) and Crash 

Analysis Reporting System (CARS). S4A provides time of crash, crash coordinate, number 

of vehicles involved, type and severity of the crash, the number of injuries and/or fatalities 

involved, weather, road surface and light condition, etc. CARS provides more crash 

information. In addition to the data recorded by S4A, CARS also offers drivers’ information, 

e.g., age, gender, race.  

In early years, S4A database mainly collected long form crashes, but short form crash 

data were not complete. The long form crash reports are designed to keep records of injury 

crashes, and short form crashes are mainly used to record property damage only crashes. 

Nevertheless, after June 2012, S4A has complete crash data from both report types for whole 

Florida. However, CARS is not as complete as S4A. For example, from 2012 to 2013, there 

were 6,741 crashes on Florida’s Turnpike in S4A database. On the other hand, CARS only 

reported 5,109 crashes on Florida’s Turnpike in the same period. Compared with S4A, CARS 
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underreported 24.2% of crashes. Because S4A can provide more crash observations and 

CARS can provide more details for each crash observation, both of them were used in this 

study. 

2.2 Traffic Data 

Traffic flow data were provided by Florida Department of Transportation (FDOT) 

and the Central Florida Expressway Authority (CFX). The Annual Average Daily Traffic 

(AADT) was from FDOT’s Road Characteristics Inventory (RCI) database. Microscopic 

traffic data, such as volume at 1-minute intervals, were obtained from CFX.  

There are two types of microscopic traffic data provided by CFX: AVI and MVDS. 

The AVI system is used for Electronic Toll Collection (ETC). If a vehicle traveling on CFX’s 

expressways is equipped with a SunPass transponder, AVI sensors will automatically record 

the vehicle’s tag ID and the timestamps this vehicle passes the AVI detector. Then, the 

expressway system will charge the vehicle according to the distance that the vehicle traveled. 

By subtracting the timestamps between two AVI sensors, the travel time can be obtained. 

Since the distance between two sensors is known based on the milepost (MP) of AVI sensors, 

the space mean speed is obtained using Eq. 2-1. 

downstream upstream

downstream upstream

Milepost Milepost
Speed

Timestamp Timestamp

−
=

−
                                  (2-1) 

Table 2-1 illustrates the number of AVI segments per direction and basic statistics on 

each of the five expressways in Central Florida for January 2016. The five expressways are 

State Road 408 (SR 408), State Road 414 (SR 414), State Road 417 (SR 417), State Road 

429 (SR 429), and State Road 528 (SR 528). 
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Table 2-1 AVI segments on CFX expressway system 

Route ID Direction 
No. of 

Segments 

Segment Length 

Mean Std. Min Max 

SR 408 
EB 26 0.87 0.47 0.17 1.85 

WB 23 0.97 0.53 0.33 2.29 

SR 414 
EB 5 1.06 0.73 0.29 2.02 

WB 4 1.32 0.81 0.35 2.31 

 SR 417 
NB 18 1.84 0.84 0.63 3.98 

SB 23 1.42 0.78 0.38 3.10 

SR 429 
NB 14 1.41 1.08 0.30 4.27 

SB 15 2.00 1.20 0.61 4.54 

SR 528 
EB 8 2.74 2.25 0.33 7.06 

WB 8 2.74 2.22 0.86 7.60 

 

Figure 2-1 illustrates the deployment of AVI sensors on the CFX expressway 

network. The AVI sensors on SR 408 is the densest, and SR 408 has the smallest mean AVI 

segment length of the five expressways in CFX system. The density of AVI sensors are 

mainly determined by two aspects: the need for collecting toll and for estimating travel time. 

The SR 408 carries the heaviest traffic and travel through the downtown area of Orlando. The 

on- and off-ramp density of SR 408 is much higher than other expressways, and AVI sensors 

need to put close to on- and off-ramps for toll collection. Additionally, the heavy traffic 

produces low travel time reliability and makes the travel time varies a lot for each segment. 

Hence, dense AVI sensors are required to more precisely predict travel time. 
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Figure 2-1 Deployment of AVI sensors on CFX expressway network 

MVDS was introduced to CFX’s expressway system since 2012, and the MVDS data 

have been available since July 2013. The system is specifically designed for traffic 

monitoring. MVDS detectors were installed at almost every merging and diverging points of 

expressway systems. They collect the traffic volume, occupancy, and average speed for each 

lane at 1-minute intervals. In addition to the traffic data above, MVDS detectors recognize 

the length of passing vehicles and classifies them under four groups: 

• Type 1: vehicles 0 to 10 feet in length  
• Type 2: vehicles 10 to 24 feet in length  
• Type 3: vehicles 24 to 54 feet in length  
• Type 4: vehicles over 54 feet in length 

There are 364 MVDS detectors along the CFX expressways with an average spacing 

of 0.574 miles. Table 2-2 shows the MVDS detector information for each direction for the 

five expressways in January 2016.  

Table 2-2 MVDS segments on CFX expressway system 
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Route ID Direction 
No. of 

Segments 

Segment Length 

Mean Std. Min Max 

SR 408 
EB 56 0.38 0.18 0.10 1.00 

WB 53 0.41 0.20 0.10 1.00 

SR 414 
EB 13 0.44 0.17 0.20 0.70 

WB 12 0.46 0.23 0.10 0.90 

 SR 417 
NB 54 0.59 0.29 0.20 1.50 

SB 54 0.59 0.29 0.20 1.30 

SR 429 
NB 28 0.68 0.54 0.20 2.80 

SB 28 0.68 0.59 0.10 3.10 

SR 528 
EB 28 0.84 0.79 0.10 3.00 

WB 28 0.84 0.82 0.10 3.10 

 

Figure 2-2 illustrates the deployment of MVDS detectors on the CFX expressway 

network. Similar as AVI detectors, the density of MVDS detectors on SR 408 is the highest. 

The MVDS detectors are used to monitor traffic conditions for expressways, which change at 

locations where traffic enters or exits expressway network. SR 408 services the areas with 

high traffic demand and need provide more accesses to nearby areas. The high access density 

requires more MVDS detectors.  
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Figure 2-2 Deployment of MVDS detectors on expressway network 

There are much more MVDS detectors than AVI detectors. Comparing Table 2-1 to 

Table 2-2, it can be found the number of MVDS detectors is more than twice of AVI sensors 

for the majority of directions. Additionally, only part of vehicles equipped SunPass, so AVI 

sensors cannot obtain all vehicles’ information. Furthermore, AVI sensors do not distinguish 

the lane a vehicle uses and vehicle length, but MVDS detectors are able to provide traffic 

data for each lane and recognize vehicle length. Hence, this study more focuses on the 

implementation of MVDS traffic data. 

2.3 Road Geometric Data 

Geometric data were obtained from RCI, which is maintained by FDOT, or manually 

collected by using ArcGIS map. The RCI records 323 features and characteristics for the 

roadway system (FDOT, 2014). When multiple geometric variables are selected, 

homogeneous segments of the roadway were generated automatically. Segments of extreme 
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short distance (less than 0.1 mile) were combined with adjacent segment, which shared 

higher similarity. The selected geometric characteristics in this study included the number of 

lanes, existence of auxiliary lanes, speed limit, horizontal degree of curvature, median width, 

and shoulder width. Vertical curves are seldom observed on the expressways because of the 

flat terrain in Central Florida and thus were not included. Table 2-3 gives an example on the 

RCI data. 

Table 2-3 RCI geometric data 

RDWYID 
Begin 

milepost 

Number of 

lanes 

Auxiliary 

lanes type 

Shoulder 

width 

Median 

width 

Horizontal 

curve 

Speed 

limit 
AADT 

75008170 1.417 2  10.0 40 0 55 41000 

75008170 1.581 2  10.0 40 0 65 41000 

75008170 2.206 2  10.0 40 0 65 52500 

75008170 2.455 2  10.0 40 0 65 52500 

75008170 2.664 2  10.0 40 0 65 52500 

75008170 2.903 2  10.0 40 0 65 52500 

75008170 3.078 2  10.0 40 0 65 52500 

75008170 3.264 2  10.0 40 0.75 65 52500 

75008170 3.543 2  10.0 40 0.75 65 52500 

75008170 3.717 2  10.0 40 0 65 52500 

75008170 3.879 2  10.0 40 1 65 52500 

75008170 3.980 3  10.0 40 1 65 52500 

75008170 4.242 3  10.0 40 0 65 52500 

75008170 4.789 3  10.0 40 2.75 65 52500 

75008170 5.027 3  10.0 40 0 65 52500 

75008000 0.382 3  10.0 20 1.5 65 46000 

75008000 0.640 3 4 10.0 20 1.5 65 46000 

75008000 0.725 3 4 10.0 20 0 65 46000 

75008000 0.866 3  10.0 20 0 65 46000 
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Some geometric information was not provided by RCI, e.g., ramp type (on- or off-

ramp), ramp configuration (loop, diamond, etc.), weaving segment length. Hence, there was a 

need to collect these data manually by using ArcGIS map.  

2.4 Macroscopic data 

The FDOT Central Office periodically develops statewide planning data, network, and 

model based on Statewide Traffic Analysis Zones (SWTAZs). The data includes trip 

generation variables. The trip generation data include diverse types of trip productions and trip 

attractions. A trip production refers to a trip end connected to a residential land-use in a zone 

whereas a trip attraction is defined as a trip end connected to a nonresidential land-use in a 

zone. For the SWTAZs that the studied ramps are in, total production trips and attractions trips 

per day were 5,601 and 5,666, respectively. Such trip production and attraction trips are 

provided by trip purposes (i.e., working, social or recreational, shopping, and total). The trip 

generation data were processed and converted to percentages by trip purposes. Among the total 

trip productions, 15.8% were home-based shopping productions, 14.8% were home-based-

work productions, and 7.1% were home-based social or recreational productions. On the other 

hand, among the total trip attractions, 16.4% were home-based-work attractions, 9.3% were 

home-based shopping attractions, and 8.4% were home-based social or recreational attractions. 

Furthermore, the SWTAZ model also provided land-use variables including population 

density, employment density, school enrollment density, and the number of employees by 

industry. It was shown that there are averagely about 2,215 residents per square mile (i.e., 

population density), 1,577 employees per square mile, and 902 enrollments per square mile. 
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Regarding the percentage of employees by industry type, the percentage of service 

employment was the highest (50%), and then is the percentages of retail employment (19.3%). 

The macroscopic data for the studied intersections were collected from the American 

Community Survey (ACS) of the U.S. Census Bureau. Because multiple spatial units (i.e., 

block group, traffic analysis zone, census tract, ZIP-code tabulation area, traffic analysis 

district, census county division, and county) were used in this study, the descriptive statistics 

were also provided by these geographic units. It is noteworthy that the basic statistics can be 

different by the level of aggregation. For instance, the average population based on block 

groups is 2,559; but it is only 631.9 based on counties. This issue is call the Modifiable Areal 

Unit Problem (MAUP), which is presented when artificial boundaries are imposed on 

continuous geographical surfaces and the aggregation of geographic data cause the variation 

in statistical results. The MAUP was observed in the datasets used in this study as there are 

more number of zones in the urban area whereas the number of zones is smaller in the rural 

area, especially in small zone systems such as block groups, traffic analysis zones, census 

tracts, etc. Thus, the average values are more affected by the urban zones in such small zone 

systems. The collected variables are as follows: demographic (i.e., population density, 

proportions of children, adolescent, middle-age, young elderly, and elderly), transportation 

mode (i.e., the proportions of commuters using car, public transit, tax, motorcycle, bicycle, 

walking, and other means), socio-economic variables (i.e., the proportion of people working 

at home, the school enrollment density, the proportion of people with bachelor’s degree or 

higher, the proportion of households below poverty line, the proportion of households with no 

vehicle, and median household income). Lastly, the proportion of urbanized area was also 

attempted.   
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CHAPTER	3:	PRELIMINARY	SAFETY	EVALUATION	

3.1 Introduction 

This chapter carries out visualization of traffic and crash data. Big data are well 

known for their huge size, thus, it is usually hard to interpret them without a series of detailed 

investigations. Data visualization facilitates researchers’ understanding of the traffic and 

crash patterns on the studied subjects. As one of the major expressways in Central Florida 

area, SR 408 was chosen as a main study area in this chapter to show the preliminary 

analysis. SR 408 travels along east-west direction through Orlando and carries commuting 

traffic, especially in morning and evening peak-hours. Both AVI and MVDS data from July 

2014 were selected for visualizing traffic-related big data, including spatio-temporal hourly 

volume and congestion. Meanwhile, traffic crashes from 2011 to 2014 on all five 

expressways were analyzed using crash density visualization. 

3.2 Visualization of Spatio-temporal Hourly Volume Distributions 

Figure 3-1 shows the spatio-temporal characteristics of weekday hourly traffic 

volume on mainline of SR 408. For SR 408, the eastbound experiences significant high travel 

demands during evening peak-hours, whereas, the traffic reaches its peak on the westbound 

during morning peak-hours.  
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(a) Eastbound 

 

(b) Westbound 
Figure 3-1 Weekday hourly volume along SR 408 

Figure 3-2 depicts the contour plots of spatio-temporal hourly volume distribution on 

SR 408. With the contour plots, the pattern can be interpreted more clearly. Hourly traffic 

volume on SR 408 during peak-hours rises to about 7,000 vehicles. The highest demand 

exists around from 6:00 A.M. to 9:00 A.M. for westbound and from 4:00 P.M. to 7:00 P.M. 
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for eastbound. The segments that experience the highest volume extend from MP (milepost) 

11 to MP 17 for both eastbound and westbound. For other segments during other time, the 

traffic volumes are relatively stable and mostly below 3,000 vehicles per hour. This 

preliminary review of SR 408 suggests when and where the congestion is likely to occur. 

Future studies on congestion evaluation should focus on these segments during peak hours.  

 
(a) Eastbound 

 
(b) Westbound 

Figure 3-2 Spatio-temporal hourly volume distribution on SR 408 



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 18 

3.3 Visualization of Congestion 

Traffic operation on expressways focuses on providing motorists with efficient 

movements to their destinations. To achieve this goal, improving congestion is one of the 

most important task. Accurate congestion measurement is a prerequisite in congestion 

management. Traditionally, volume-to-capacity (V/C) ratios and level of service (LOS) were 

implemented by transportation authorities as indicators of congestion intensity (Grant et al., 

2011). Nevertheless, traffic demand can vary considerably in both temporal and spatial 

dimensions. Roadway capacity is not fixed, because it might be impacted by crashes, 

weather, etc. In such cases, V/C and LOS lack the capability to capture the variability of 

congestion. With the fast development of ITS technology, real-time congestion measurement 

is becoming an urgent call. On the expressway system, both AVI and MVDS traffic detection 

systems are employed. Both of these systems archive the traffic data in real-time manner. In 

this project, multiple congestion measures were introduced and compared based on these two 

traffic detection systems. 

3.3.1 AVI-based Congestion Measurement 

Congestion measurement is mainly based on three indexes, namely density, travel 

time, and travel speed. AVI system is able to calculate the travel time of vehicles on a 

segment. Therefore, congestion measured using travel-time was introduced for the AVI 

system. Travel time index (TTI) is a commonly accepted measure used to evaluate traffic 

congestion. It is defined as the ratio of actual travel time to an ideal (free-flow) travel time 

(Cambridge Systematics, Inc., 2005). The formulation is shown in Eq. 3-1: 

TTI = (Actual travel time) / (Free-flow travel time)                               (3-1) 
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It indicates the additional time spent on a trip compared to an ideal trip on the same 

corridor. On the Central Florida expressway system, free flow travel time for each segment is 

in the AVI traffic data. Free-flow travel time is calculated based on segment length and its 

speed limit. If a segment has more than one speed limit, then the average speed limit is used. 

According to a study by Griffin (2011), the levels of congestion and the corresponding travel 

time index are listed in Table 3-1. 

Table 3-1 Travel time index and congestion levels 

Functional Classification 
Travel Time Index for Different Congestion Levels 

No congestion Moderate congestion Heavy congestion 

Freeway less than 1.25 1.25 to 1.99 Higher than 2.00 

 

3.3.2 MVDS-based Congestion Measurement 

Different from the AVI system, MVDS detectors reflect the traffic conditions at the 

installed points rather than segments. Speed, volume, and lane occupancy are archived on 

one-minute interval basis by MVDS. Multiple congestion measures can be developed from 

the MVDS traffic data. Occupancy is defined as the percent of time a point on the road is 

occupied by vehicles (Hall. 1996). Gerlough and Huber (1975) referred to occupancy as a 

surrogate for density. Compared with traditional V/C Ratio or LOS, occupancy has the 

advantage that it could be monitored in real-time. Meanwhile, the rate of reduction in speed 

caused by congestion from the free flow speed condition is adopted as congestion index 

(Hamad and Kikuchi, 2002; Hossain and Muromachi, 2012). The congestion index (CI) is 

expressed as:                
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The CI is a continuous congestion indicator ranging from zero to one. The free flow 

speed is the 85th percentile speed at the studied location for the whole study period. From Eq. 

3-2 above, it can be seen that when the actual speed is above free flow speed, CI will be 

recorded as zero. When CI increases, the congestion becomes more severe.  

Currently, for the congestion measures calculated from MVDS data, there is no 

specific relationship between occupancy or CI and level of congestion is available. However, 

the TTI value of 1.25 and 2 are approximately equivalent to CI value of 0.2 and 0.5. 

According to the congestion plots, when CI reaches 0.2 and 0.5, the corresponding 

occupancy (%) is about 15 and 25. Therefore, congestion levels defined by occupancy and CI 

as displayed in Table 3-2 (Shi, 2014). Nevertheless, further refinement of these thresholds 

might be possible. 

Table 3-2 MVDS-based congestion index and congestion levels 

Congestion measure 
Travel Time Index for Different Congestion Levels 

No congestion Moderate congestion Heavy congestion 

Occupancy (%) ≤ 15 15 – 24.99 ≥ 25 

CI ≤ 0.2 0.2 – 0.499 ≥ 0.5 

 

3.3.3 Expressway Mainline Congestion 

To measure expressway mainline congestion conditions, the traffic data were 

aggregated at five-minute interval and were averaged by the weekdays for July 2014. 

Contour plots were generated to illustrate the spatio-temporal property of the congestion. The 

TTI congestion plots shown in Figure 3-3 illustrate a proportion of AVI data near MP 20 
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were missing for both directions in July 2014, because those sensors in that month were 

under maintenance. Despite the incompleteness of AVI data, some patterns could be found 

from Figure 3-3, on SR 408 eastbound, congestion is found near MP 9.0 and MP 18.0 in the 

evening peak hours. On SR 408 westbound, morning congestion is observed from MP 11.0 to 

MP 15.0. These congestion patterns could also be found in Figure 3-4 and Figure 3-5, 

indicating that AVI data could reflect congestion to certain extent. However, it is still 

important to have complete data to evaluate the performance of AVI-based congestion 

measure.   
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(a) Eastbound 

 
(b) Westbound 

Figure 3-3 Mainline weekday travel time index of SR 408 

The congestion plots derived from occupancy and CI (Figure 3-4 and Figure 3-5) 

exhibit comparable congestion patterns for the expressways. As mentioned above, the 

number of MVDS sensors installed along the expressways is significantly more than that of 

the AVI sensors. Additionally, the MVDS system is stable in terms of active sensors during 

the study time period. Therefore, the MVDS data is relatively complete and stable. 
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(a) Eastbound 

 
(b) Westbound 

Figure 3-4 Mainline weekday occupancy of SR 408 
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(a) Eastbound 

 
(b) Westbound 

Figure 3-5 Mainline weekday congestion index of SR 408 

Based on occupancy and CI, congestion conditions on SR 408 can be summarized. 

SR 408 experiences moderate congestion on eastbound in morning peak hours and heavy 

congestion on westbound in the evening peak hours. However, it should be noticed that the 

congestion intensity changes with time. When it is approaching peak hours, the congestion 

intensity gradually increases. Once the peak time is passed, the congestion becomes less 
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severe. The congested area for SR 408 is approximately from MP 17.0 to MP 19.0 on 

eastbound and from MP 10.0 to MP 13.0 on westbound. 

3.4 Visualization of Crashes on Expressways 

For the total crashes on the expressway system, the spatial pattern of crashes is 

examined through crash density. The spatial distribution of crashes on mainlines and ramps 

can be found in Figures 3-6 to 3-9. Toll plazas in Central Florida expressway system have 

two types of lane: express lane and cash lane. Vehicles on expressway lanes use ETC to pay 

toll fee automatically, but those on cash lane need to stop at tollbooth to pay toll. Hence, the 

driver behaviors on toll plaza cash lane are different from other mainlines, and the crash 

pattern of cash lane was explored separately. 

From the figures, the concentration of crashes and the changes from January 2011 to 

June 2014 can be found. For the mainline crashes, the segment on SR 408 between the 

interchange with Semoran Blvd and SR 417 is the most concentrated area of mainline crashes 

in 2011. After 2011, the mainline crashes began to shift to the interchange of SR 408 and I-4. 

In the first six months of 2014, the segment that has the most mainline crashes is near the 

interchange of SR 408 and I-4 while the interchange with SR 417 is no longer identified as 

the hot spot. This reduction of crashes at the segment near SR 417 might be caused by the 

interchange improvement project on this specific interchange. Also, in 2013 and 2014, the 

segment on SR 528 near the interchange with Semoran Blvd has become a crash hot post. 

This area is the same segment that experiences congestion on SR 528. Limited express lanes 

and lower speed limit on the lanes might contribute to the crash occurrence.  
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The number of crashes on mainline toll plaza cash lanes is relatively small compared 

with those of mainline and ramp crashes. The low number of cash lane crashes result in 

significant crash pattern change even though a small variation of crash counts. Hence, crash 

hot spots for toll plaza cash lanes were not fixed in these years. Nevertheless, Pine Hills 

Mainline Toll Plaza, Conway Road Mainline Toll Plaza on SR 408, John Young Parkway 

Mainline Toll Plaza, University Mainline Toll Plaza on SR 417, and Beachline Mainline Toll 

Plaza on SR 528 were found to be the toll plazas on the mainline that can have more crashes 

on their cash lanes. 

For the ramp crashes, the similar pattern as mainline crashes on SR 408 were also 

detected. From 2011 to 2013, ramps at the interchange between SR 408 and SR 417 had the 

highest crash density. However, this pattern changed in 2014 as that the interchange between 

SR 408 and I-4 becomes the concentration area of ramp crashes on SR 408. The interchange 

between SR 417 and SR 528 is also a major area for ramp crashes. Also, the ramps on SR 

417 at John Young Parkway and Orange Blossom Trail were found to be more likely to have 

ramp crashes. The findings of mainline crashes, mainline toll plaza cash lane crashes, and 

ramp crashes shows the concentrated locations of each type of these crashes. The changes in 

crash density on the expressway system are found. The results can be used for potential 

safety improvement projects in the future. 
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Figure 3-6 Spatial pattern of traffic crashes in 2011 

 

 
Figure 3-7 Spatial pattern of traffic crashes in 2012 

 

 
Figure 3-8 Spatial pattern of traffic crashes in 2013 
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Figure 3-9 Spatial pattern of traffic crashes in 2014 

3.5 Summary 

In this chapter, visualization of traffic conditions on the most busiest expressway in 

Central Florida (SR 408) is conducted. Three-dimension spatio-temporal and contour plots 

were depicted to describe hourly volume distribution. Congestion levels on SR 408 were 

visualized by using TTI, occupancy, and CI. Subsequently, the spatial patterns of traffic 

crashes by facility types were visualized from 2011 to 2014. The visualization of crashes 

enables researchers to easily detect crash hotspots and to suggest appropriate engineering 

countermeasures. Data visualization facilitates researchers’ understanding of the traffic and 

crash patterns on the studied objects. The spatiotemporal distribution of crashes along with 

corresponding traffic flow offer valued insights and can guide future statistical inference thus 

is a necessary step in big data analyses. 
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CHAPTER	4:	REAL-TIME	CONFLICT	PRECURSORS	FOR	WEAVING	SEGMENTS	

4.1 Introduction 

Traditional traffic safety studies are mainly based on historic traffic crash data. 

However, the usage of crash data is sometimes limited because of the unreliability of crash 

records and the long time needed to collect adequate crash samples (Glennon and Thorson, 

1975; Essa and Sayed, 2015). Therefore, there has been plenty of traffic safety studies, which 

rely on surrogate safety measures.  

One of the most commonly used surrogate measures is traffic conflicts. A traffic 

conflict was defined as a traffic event involving two or more road users, in which one user 

performs some unusual actions, such as a change in direction or speed, these unusual actions 

place another user in the danger of a collision unless an evasive maneuver is undertaken 

(Migletz et al., 1985). Previous studies have proven that conflict counts are positively related 

to crash counts, and the relationship is statistically significant (Meng and Qu, 2012; Sacchi 

and Sayed, 2016). Furthermore, researchers collected field conflict counts on roadway 

facilities to uncover potential safety hazard (Van Der Horst et al., 2014), and to verify the 

safety impacts of countermeasures, such as raised crosswalks (Cafiso et al., 2011; Autey et 

al., 2012). However, the majority of previous studies only focused on conflict count, but 

were not interested in the cause of each conflict and did not analyze conflicts from a 

microscopic aspect. 

One of the studies that explore traffic safety from a microscopic aspect is real-time 

safety analysis. The real-time safety analysis intends to identify precursors that are relatively 

more “hazard prone” that other parameters. It is accomplished by comparing and analyzing 
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traffic, weather, and other conditions right before the occurrence of hazard and non-hazard 

events, and furthermore by estimating the likelihood of hazard events. The hazard events 

include crash and conflict events. The real-time crash analysis research has been successfully 

done by plenty of previous studies (Zheng et al., 2010; Yu and Abdel-Aty, 2013a). However, 

there has not been enough real-time conflict analyses. 

This chapter implements microscopic simulation and Surrogate Safety Assessment 

Model (SSAM) to conduct real-time conflict study. To build a well-calibrated and validated 

simulation network, this study first adopted high-resolution big traffic data from MVDS to 

serve as the traffic volume input and desired speed distribution input. Meanwhile, the 

microscopic simulation network were built based on a two level calibration and validation 

method. The method is able to enhance the consistency between simulated safety and filed 

safety, and between simulated traffic and field traffic. In simulation, conflicts are identified 

by SSAM, a software developed by Federal Highway Administration (FHWA). The SSAM 

automatically conducts conflict analysis by directly processing vehicle trajectory data from 

simulation output. The conflict analysis contains conflict location, time, type, etc. After 

obtaining time and location of a conflict or non-conflict event, the event is matched with the 

traffic data just before it. Then a logistic regression models are employed to distinguish 

conflict events from non-conflict events using traffic parameters.  

4.2 Experiment Design 

4.2.1 VISSIM Network Building 

One of the most important parts of this chapter is building a calibrated and validated 

VISSIM network. Previous studies on weaving segments’ microscopic simulation only 
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compared simulated traffic with field traffic (Wu et al., 2005; Jolovic and Stevanovic, 2013). 

The results showed that the simulated traffic was consistent with field traffic if driver 

behavior parameters in the simulation were adjusted. However, this chapter focuses on real-

time conflict analysis in microscopic simulation. Hence, not only traffic condition in 

simulation needs to be calibrated and validated, but also safety condition of the simulation 

network requires validation.  

In order to ensure both traffic and safety of the simulation network are consistent with 

those of the field, a two level calibration and validation method was used. At the first level, 

the traffic conditions of weaving segments were calibrated and validated based on field 

MVDS data. At the second level, the simulated conflict count of each weaving segment was 

compared to its crash frequency. If the simulated speed or conflict is not consistent with its 

corresponding field value, driver behavior parameters need to be adjusted. The calibration 

and validation procedure is shown in Figure 4-1. 
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Figure 4-1 Two level calibration and validation procedure 

4.2.2 Simulation Network Data Preparation 

The study chose 16 weaving segments located on SR 408. Two datasets were 

collected for these 16 weaving segments: crash and traffic. Crash data were from S4A. 

Eighty-three crashes were identified on the 16 studied weaving segments from July 2013 to 

July 2014. The traffic data were obtained from MVDS.  

It was assumed that the weekday daytime moderate traffic (from 1:00 P.M. to 3:00 

P.M), which is neither the peak hour traffic nor the lowest traffic, can represent the average 

traffic condition. The peak hour of SR 408 for weekday is 6:00 A.M. to 9:00 A.M. in the 

morning and 4:00 P.M. to 7:00 P.M. in the afternoon. The traffic data from 1:00 P.M. to 3:00 

P.M. on four Thursdays in August 2014 were aggregated into 15 minutes to provide the 
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VISSIM traffic input, including volume and Heavy Goods Vehicles (HGVs) percentage. The 

Type 3 and Type 4 vehicles in MVDS data were considered as HGVs in VISSIM.  

Desired speed distribution is also an important input for the VISSIM network. If not 

hindered by other vehicles or network objects, e.g. signal controls, a driver will travel at 

his/her desired speed (PTV, 2013). The speed data during 11:00 A.M. to 1:00 P.M. on 

Thursdays in August 2014 were chosen. During this period, the traffic volume is the lowest 

in the daytime. Thus, the possibility of a vehicle constrained by other vehicles is low and 

vehicles are more likely to travel at their desired speed. Generally, the desired speed 

distribution is decided by geometric design, e.g., degree of curvature, speed limit. The 

desired speed distribution for each location might not be the same. Hence, this study divided 

the locations of SR 408 into seven groups according to the similarity of speed limit and field 

speed distribution of each location. The group information is in Table 4-1. In the table, for 

each location, the beginning two letters stand for direction, i.e., WB is westbound and EB is 

eastbound; the numbers stand for milepost.  
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Table 4-1 Speed distribution for each location 

Speed Limit Group Locations 

55 

1 WB 22.7, EB 21.8, WB 10.3, EB 22.7, EB 9.2 

2 
EB 9.4, EB 9.6, WB 9.9,WB 20.8, EB 10.8,WB 10.6, WB 8.1, WB 

14.5, WB 8.4, WB 9.7, WB 12.1, WB 20.7, EB 10.3 

3 

WB 7.4, WB 9.2, WB 11.3, EB 11.5, EB 8, EB 12.5, WB 10.9, EB 

8.4, WB 8.9, WB 15.2, EB 22.3, EB 7.6, WB 13, EB 10.6, EB 7, WB 

11.6, WB 14.4 

4 

EB 12.9, EB 8.9, WB 7.3, WB 14.2, EB 11.2, EB 7.4, EB 12.1, EB 

14.5, WB 22.3, EB 6.8, EB 14.7, WB 12.6, EB 16.1, WB 6.8, WB 

15.7, WB 21.8, WB 7.6, EB 15.7 

65 

5 
EB 20.8, WB 19.7, WB 1.4, WB 1.6,WB 5.3, EB 5.3, WB 2.4, EB 

20.3 

6 

WB 15.9, EB 18.4, EB 16.5, WB 18.4, WB 4.6, EB 2.4, WB 19.9, EB 

1.4, EB 4.6, WB 16.5, WB 3.6, WB 18.8, EB 3.6, EB 4.3, EB 18, EB 

18.8, EB 20.1, WB 17, WB 2, WB 4.9, WB 17.8, WB 18, EB 19.5, 

EB 2.2, EB 17.7, WB 16.1, EB 17.3, EB 1.7, WB 4.3 

7 EB 4.9 

 

Figure 4-2 shows the cumulative percentage of desired speed distribution for each 

group.  
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Figure 4-2 Speed distribution for each group 

The desired speed distribution in the figure is the average speed of all vehicles, 

including passenger cars (PCs) and HGV. However, PC and HGV are at different speeds. 

Johnson and Murray (2010) concluded that the average speed difference between cars and 

trucks was 8.1 miles per hour. The HGVs might be considered as trucks. The HGV 

percentage of these 16 weaving sections is about 13%. Suppose x is the speed of passenger 

cars, then the speed for HGV is equal to (x-8.1), the average speed is y, then, 

87% 13%( 0.81)x x y+ − =                                                    (4-1) 

From Eq. 4-1, PC speed is about y+1, and the truck speed is about y-7. By shifting the 

curve in Figure 4-2 to the right by 1 mph, speed distributions of PC for each group can be 

obtained. Similarly, by shifting the curve by 7 mph to the left, HGV speed distributions can 
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be gained. Finally, there are 14 desired speed distributions, among which seven are for PCs 

and seven for HGVs. 

4.2.3 Data Extraction 

Once driver behavior parameters were obtained after the calibration and validation 

procedure, they were put into the VISSIM network. Then, 15 simulation runs were carried 

out. The trajectory files from simulation output were analyzed in SSAM to provide conflict 

information. For each conflict, its corresponding traffic data were from data collection points 

in VISSIM. The layout of data collection points in VISSIM is illustrated in Figure 4-3. When 

vehicles pass the data collection points, the points collected every vehicle’s data, including 

entry time, exit time, vehicle classification, speed, occupancy, etc. 

 

Figure 4-3 Traffic data extraction 

The data extraction of the real-time conflict study is different from that of a crash 

precursor study. First, crash disruptive condition is usually 5-10 minutes before a crash 

(Abdel-Aty and Pemmanaboina 2006, Xu et al. 2013). The crash time in crash reports is 

actually the estimated crash time, which migh be after actual crash time. Thus, the traffic data 

which are 0-5 minutes before crash reporting time might already been impacted by a crash, 
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so the trafific data 5-10 minutes before the time in crash report are usually chosen. However, 

for the conflict precursor study, the accurate conflict time can be obtained from SSAM. 

Hence, the traffic data, which are 0-5 minutes before a conflict, were chosen as conflict 

disruptive events. As for the non-disruptive events, they were 5-minute interval traffic data 

and were defined as the conditions, which neither resulted in a conflict nor were under 

influence of conflicts. In this study, it was assumed that traffic conditions were not impacted 

by conflicts if they were more than 60 seconds after conflicts, because conflicts are cleared 

quickly in simulation and the influence of conflicts on traffic vanish soon. Furthermore, in 

order to explore conflict mechanisms more closely, the study also adopted the traffic data 

that were 0-1 minutes before conflicts as disruptive condition, and the non-disruptive traffic 

data were also at 1-minute intervals. Hence, two datasets were prepared: one was based on 5-

minute interval; the other one was based on 1-minute interval. 

Second, in crash prediction studies, the number of non-disruptive conditions is much 

more than that of disruptive conditions. In order to balance the sample size of disruptive and 

non-disruptive conditions, non-disruptive condition observations are randomly selected from 

the full samples (Abdel-Aty et al. 2004, Hossain and Muromachi 2010, Xu et al. 2013). 

Nevertheless, conflict number is much more than crash number. Gettman et al. (2008) found 

that the probability of being involved in a crash given a traffic conflict is 0.005% at 

intersections. This indicates that the conflict number was 20,000 times of the crash number in 

their study. In real-time conflict study, the sample size of disruptive conflict condition is 

largely enriched, and the sample size of non-disruptive conflict condition is significantly 

decreased. There was no need to select randomly the non-disruptive conflict condition 

samples. 



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 38 

The variables obtained from data collection points of VISSIM network and from the 

geometric design of weaving segments are shown in Table 4-2. 

Table 4-2 Variable definition 

Variables* Description 
Bm_spd Average speed at the beginning of weaving segments (mph) 
Bm_vol Vehicle count per lane at the beginning of weaving segments (vehicles) 
Bm_occ Average lane occupancy at the beginning of weaving segments (%) 
Bm_std_spd speed standard deviation at the beginning of weaving segments (mph) 
Onr_spd Average speed for on-ramp (mph) 
Onr_vol Total vehicle count for on-ramp (vehicles) 
Onr_occ Average lane occupancy for on-ramp (%) 
Em_spd  Average speed at the end of weaving segments (mph) 
Em_vol Vehicle count per lane at the end of weaving segments (vehicles) 
Em_occ Average lane occupancy at the end of weaving segments (%) 
Em_std_spd speed standard deviation at the end of weaving segments (mph) 
Offr_spd Average speed for off-ramp (mph) 
Offr_vol,  Total vehicle count for off-ramp (vehicles) 
Offr_occ Average lane occupancy for off-ramp (%) 
VFF Mainline-to- mainline vehicle count (vehicles) 
Vehcnt Total traffic count in the weaving segment (vehicles) 
VR Weaving volume ratio, weaving volume over total traffic count (%) 

Spd_dif Speed difference. Spddif =0 if Bm_spd is lower than Em_spd; otherwise 
Spddif = Bm_spd- Em_spd 

Bm_acc Average acceleration at the beginning of weaving segments (fts) 
Em_acc Average acceleration at the end of weaving segments (fts) 
Bm_headway Average headway at the beginning of weaving segments (s) 
Em_ headway Average headway at the end of weaving segments (s) 

Ls Short length, distance between the end points of any barrier markings (solid 
white lines) that prohibit or discourage lane changing (feet) 

Lb 
Base length, distance between points in the respective gore areas where the left 
edge of the ramp-traveled way and the right edge of the freeway-traveled way 
meet (feet) 

NWL Number of lanes from which a weaving maneuver may be made with one or no 
lane changes (lane) 

N Number of lanes within the weaving segment (lane) 

LCRF  Minimum number of lane changes that must be made by a single weaving 
vehicle moving from the on-ramp to the expressway (lane) 

LCFR Minimum number of lane changes that must be made by a single weaving 
vehicle moving from expressway to off-ramp (lane) 

LC Weaving configuration, 0 when LCRF =LCFR=1, 1 otherwise 

LCmin 
Minimum rate of lane change that must exist for all weaving vehicles to 
complete their weaving maneuvers successfully (lane/hour) 

Lmax
# Maximum weaving influence length (1000 feet) 

* All traffic data are separately measured in 5-minute interval and 1-minute interval 
# ( )1.6max [5728 1 1566 ] /1000WLL VR N= + −  (in HCM 2010) 
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4.3 VISSIM Network Calibration and Validation 

Based on the previous literatures (Koppula, 2002; Wu et al., 2005; Woody, 2006; 

Jolovic and Stevanovic, 2013), four parameters were chosen for VISSIM calibration and 

validation. They were desired lane change distance (DLCD), stand still distance (CC0), 

following headway time (CC1), and following variation (CC2). DLCD defines the distance at 

which vehicles begin to attempt to change lanes in order to arrive at their desinations. CC0 is 

desired distance between stopped vehicles. CC1 is following headway time, which means the 

time (in seconds) a driver wants to keep. The higher the CC1, the more cautious the driver is. 

CC2 is following variation, which restricts the longitudinal oscillation or how much more 

distance than the desired safety distance a driver allows before he/she intentionally moves 

closer to the car in front (PTV group, 2013).  

The study first used the recommended parameters’ value from previous studies to 

validate the VISSIM network (Koppula, 2002; Wu et al., 2005; Woody, 2006; Jolovic and 

Stevanovic, 2013). The results showed the previous studies’ conclusions were valid only 

when traffic was compared. However, when comparing the simulated conflict counts with the 

field crash frequencies, the correlation coefficients were not significant. This is because the 

parameters’ values were gained without considering the safety in previous studies.  

There was a need to revalidate the weaving segment VISSIM network with respect to 

both traffic and safety. Twenty-three sets of parameters were tried and each set was run three 

times with different random seeds. After excluding 30 minutes VISSIM warm up time and 30 

minutes cool down time, 60 minutes VISSIM data were put into use. For the 16 weaving 

segments network, the results showed that VISSIM could provide good traffic and safety 
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results when the DLCD was 300 meters, CC0 was 1.5 meters, CC1 was 1.5 seconds, and 

CC2 was 4 meters. 15 more runs using the parameters above were carried out. For the 15 

simulation runs, the average GEH value of the validated VISSIM network was 1.82, and 

96.0% of GEH were less than 5 for a 15 minutes interval. As for the speed, the average 

absolute of speed difference was 2.00 mph, and 92.2% of speed differences were less than 5 

mph for a 5 minutes interval. The good results also implied that implementing big traffic data 

can help in build microscopic simulation networks with good quality. The results approved 

that the traffic calibration and validation satisfy the requirements, and indicate the traffic on 

the weaving segment network was consistent with that of the field (Nezamuddin et al., 2011; 

Yu and Abdel-Aty, 2014). 

After the traffic calibration and validation, the trajectory files of the simulation runs 

were processed in SSAM. Several conflict measurements can be obtained from SSAM, such 

as time-to-collision (TTC) and post-encroachment-time (PET). TTC is defined as the 

expected time for two vehicles to collide if they remain at their present speed and continue on 

their respective trajectories; PET is time difference between the arrivals of two vehicles at the 

potential point of collision (Gettman and Head, 2003). In this study, a conflict was identified 

when TTC was less than 1.5 seconds and PET was less than 5.0 seconds. The same 

thresholds were also widely adopted by other studies (Stevanovic et al., 2013; Saleem et al., 

2014; Saulino et al., 2015). Meanwhile, when TTC was 0, the observation was deleted 

(Gettman et al., 2008). 

The average simulated conflict count for each weaving segment was then compared 

with the corresponding crash frequency. The information can be found in Table 4-3. Then, 

SAS procedure ‘Corr’ was used to conduct a Spearman rank correlation test. The range of 
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Spearman’s rank correlation coefficient is 0 to 1; a coefficient of 0 indicates no correlation 

and 1.0 represents a perfect agreement (Gettman et al., 2008). The result showed that the 

correlation coefficient between simulated conflict counts and field crash frequencies was 

0.506 (p-value= 0.0457), which indicates that there was a significant positive relationship 

between field crash count and conflicts. 

Table 4-3 Simulated conflict count and field crash count 

ID 
Run 

Avg* Crash 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 2 3 2 3 1 0 3 3 1 0 2 0 0 3 0 1.5 4 

2 6 4 2 5 6 3 3 7 10 6 7 4 6 5 8 5.5 3 

3 0 1 0 1 1 1 2 0 0 0 1 1 0 3 2 0.9 4 

4 1 1 3 2 1 1 2 1 1 0 1 2 2 0 2 1.3 1 

5 16 5 5 15 12 15 14 4 7 5 8 10 13 16 13 10.5 8 

6 17 17 13 20 12 24 16 22 20 11 24 27 14 17 34 19.2 8 

7 2 1 2 2 0 0 0 0 0 0 1 1 1 4 3 1.1 4 

8 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0.3 6 

9 4 6 5 1 8 4 9 7 1 1 10 11 4 6 9 5.7 4 

10 7 12 8 9 6 16 9 10 3 7 7 18 8 7 8 9.0 9 

11 19 13 4 11 8 5 12 13 9 11 6 16 6 11 10 10.3 15 

12 1 6 3 1 1 0 2 1 1 4 3 0 0 1 2 1.7 4 

13 5 2 4 1 5 5 3 1 1 5 3 4 5 0 3 3.1 1 

14 0 0 0 0 1 2 0 0 1 1 0 1 0 6 0 0.8 3 

15 4 1 2 0 1 0 0 0 0 1 0 2 1 2 1 1.0 3 

16 1 1 0 2 3 2 3 4 2 2 1 3 3 3 2 2.1 6 

     * Average conflict number 

4.4 Model Estimation 

In order to find significant conflict precursors and to quantify their impacts on 

conflict risk, two logistic regression models were built: one was based on 5-minute intervals; 

the other one was based on 1-minute intervals. K-folder cross validation method was used to 
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validate models’ performance. The k-fold cross-validation method is able to minimize the 

bias caused by the random sampling of the training and validation data samples (Olson and 

Delen, 2008). In k-fold cross-validation, the complete dataset is randomly divided into k 

mutually exclusive subsamples, each subsample having proximately equal sample size. The 

model is trained and tested k times. For each attempt, a subsample acts as the validation data 

for testing the model, and the remaining k-1 subsamples are training data. Each of the k 

subsamples is used exactly once as the validation data, so the cross-validation process is 

repeated k times in total. Then the k results from the k validation folds are combined to 

provide a single estimation of model performance. In this study, a 10-folder cross validation 

was adopted. The model results are shown in Table 4-4. 

Table 4-4 Real-time conflict prediction model for weaving segment 

Variables Mean Std. p-value 

Based on 5-minute 

interval 
   

Intercept -17.99 1.42 <0.01 

Log(Vehcnt) 2.40 0.21 <0.01 

Lmax 0.36 0.09 <0.01 

Bm_acc -2.85 0.54 <0.01 

Training AUC 0.727 

Validation AUC 0.721 

Based on 1-minute 

interval 
 

Intercept -19.24 0.69 <0.01 

Log(Vehcnt) 3.82 0.16 <0.01 

Lmax 0.21 0.03 <0.01 

Bm_acc -1.73 0.22 <0.01 

Training AUC 0.827 

Validation AUC 0.827 
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Area Under the Curve (AUC) is a good inex of classification accuracy for logistic 

regression models (Hosmer Jr et al., 2013). It plots true positive rate against false positive 

rate for all possible thresholds. The range of AUC is 0.5 to 1.0, a higher value indicating a 

better ability in discriminating conflict and non-conflict events. When the AUC of a model is 

higher than 0.80, it indicates the model has a good discrimination between case and control 

(Hosmer Jr et al., 2013). 

Both the 5-minute interval and 1-minute interval models showed that the Logarithm 

of vehicle count, maximum influence length, and average acceleration at the beginning of 

weaving segments were conflict precursors that were significant at the 5% confidence 

interval. The 1-minute interval model performed better than the 5-minute interval model by 

providing higher training and validation AUCs. Compared to the model using traffic 

aggregated at a 5-minute interval, the model using 1-minute interval traffic was able to 

capture information that is more detailed.  

The coefficients of significant variables in the two models vary. The main reason 

might be the way through which traffic was aggregated. From the standard deviations of the 

coefficients, it could be found that the 1-minute interval model provided lower standard 

deviations than the 5-minute interval model, which indicates that the 1-minute interval model 

is more reliable than the 5-minute interval model. It is not hard to understand, the disruptive 

traffic 0-1 minutes before a conflict can better present the traffic condition contributing to the 

conflict than the disruptive traffic 0-5 minutes before the conflict. 

The Logarithm of vehicle count was positively related to conflict risk. When vehicle 

count increases, the exposure increases and then the conflict likelihood increases. The 

maximum influence length was with a positive sign. A longer influence distance is because 



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 44 

of a higher percentage of weaving volume. High weaving volume indicates high on-ramp or 

off-ramp volume or both. For on-ramp vehicles, they need to accelerate to merge into 

mainline traffic; for off-ramp vehicles, they have to diverge from mainline and decelerate to 

adjust to low speed limits on off-ramps; meanwhile, high on- and off-ramp traffic volume 

also rises weaving opportunity. The acceleration, deceleration, weaving, merging, and 

diverging actions definitely worsen traffic safety. Additionally, the average acceleration at 

the beginning of weaving segment was proven to have a significantly negative impact on 

conflict risk, which means an increase of average acceleration decreases conflict risks.  

4.5 Summary 

There has been plenty of traffic safety research based on surrogate safety measures. 

One of the most commonly used surrogate safety measures is traffic conflicts. The majority 

of previous conflict studies focused on conflict frequencies but did not explore conflict 

mechanisms from a microscopic aspect. This chapter built a real-time conflict prediction 

model for weaving segments based on the traffic and conflict information captured from 

microscopic VISSIM network. The simulation network was well calibrated and validated 

because of high-resolution big traffic data input. 

Driving behavior parameters in simulation were adjusted to validate the simulation 

network. When DLCD was 300 meters, CC0 was 1.5 meters, CC1 was 1.5 seconds, and CC2 

was 4 meters, not only the traffic condition but also the safety condition of simulated network 

were consistent with the field weaving segment network. The validated VISSIM network had 

an overall average GEH value of 1.82 and the average speed difference was 2.00 mph. The 
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Spearman rank correlation test was carried out to compare the simulated and filed safety, the 

coefficient was 0.506 and was significant at the 5% confidence interval. 

Two conflict prediction models were estimated, one was based on a 5-minute interval 

and the other was based on a 1-minute interval. In both models, Logarithm of vehicle count, 

maximum influence length, and average acceleration at the beginning of weaving segment 

were significant variables. The model performance of the 1-minute interval model was better 

than that of the 5-minute interval model by providing higher AUCs and lower standard 

deviation of variable coefficients.  

This study is the first one which use the simulated conflict to study the traffic 

parameters’ impacts on safety in real-time. Before this study, if researchers intended to build 

the real-time safety prediction model, several months’ crash and traffic data for several 

locations should be prepared to obtain enough sample size. The traffic data had to be 

collected continuously and be with high resolution. If the funding is limited, it is hard to 

equip road facilities with enough traffic detectors. Hence, implementing simulation to study 

the real-time safety analysis might be an economic, time saving, and reliable method.  
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CHAPTER	5:	TRAVEL	TIME	RELIABILITY	AND	TRAFFIC	SAFETY	

5.1 Introduction 

With a steady growth of traffic demands in urban areas, toll expressways have 

become an important alternative for transportation agencies to provide motorists with safe, 

efficient, and reliable trips. Three major focus of traffic operators are reducing crash 

occurrence, decreasing congestion, and improving travel time reliability on the highway 

systems. These three aspects might be interrelated. In other words, an aspect might have an 

effect on the others. For instance, crashes could lead to decreased efficiency and unreliable 

travel time; reduced efficiency could increase crash likelihood and lower travel time 

reliability; unreliable travel time could cause unstable traffic flow thus affecting efficiency 

and safety.  

During the past few decades, there have been substantial efforts dedicated to 

exploring the crash mechanisms and the relationship between traffic efficiency (e.g., level of 

service, congestion) and traffic safety. Nevertheless, no research studies have been done to 

investigate how travel time reliability could affect traffic safety on urban expressways. The 

objective of this chapter is thus to identify whether travel time reliability has impacts on 

crash frequency and crash risk for expressways.  

5.2 Background 

Travel time reliability indicates the level of consistency in transportation service 

experienced by travelers compared with their normal experience. Given travel time data, 

various approaches have been proposed to measure the travel time reliability. Three types of 
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measures could be generalized, namely statistical range measures, buffer measures, and tardy 

trip indicators (Martchouk, 2009). One of the statistical range measures is the Percent 

Variation as shown in Eq. 5-1 (Lomax and Margiotta, 2003). 

!"#$"%&	()#*)&*+% = -./01/21	3456/.670	78	92/54:	96;4
<542/=4	92/54:	96;4 ×100%                             (5-1) 

The Buffer Index in Eq. 5-2 is a buffer measure to assess how much extra time is 

needed for uncertainty in the travel conditions (Martchouk, 2009).  

95 100%th Percentile Travel Time Average Travel Time
Buffer Index

Average Travel Time
−

= ×                            (5-2) 

Tardy trip indicators imply the amount of late trips. The Misery Index as displayed in 

Eq. 5-3 is a tardy trip indicator that compares the worst 20% of the trips against the average 

condition to show the impact of late traffic on reliability (Lomax and Margiotta, 2003). 

20% 100%Average of the Travel Time for the Longest of Trips Average Travel Time for All Trips
Misery Index

Average Travel Time for All Trips
−

= ×
        (5-3) 

The indicator Percent Variation is easy for calculation and interpretation; meanwhile, 

it can be used in real-time analysis. However, it has a drawback since it treats early and late 

arrivals equally whereas in reality the public is more concerned about late arrivals. On the 

other hand, the Buffer Index and Misery Index focus on the impact of late arrivals on travel 

time reliability, but they are hard to be implemented in real-time analysis, since the 

calculation of Buffer Index and Misery Index requires large samples to reduce the possibility 

that individual observations have significant impacts on calculation results. Hence, the crash 

frequency study implemented the three indicators; whereas, the real-time safety analysis only 

adopted Percent Variation. 
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In some existing studies (Geedipally and Lord, 2010; Yu and Abdel-Aty, 2013a), 

there have already been discussions about different mechanisms between SV and MV 

crashes. For the purpose of this chapter, whether travel time reliability would have impact on 

SV and MV crashes in the same manner is worth investigation. Additionally, real-time crash 

analysis was utilized to estimate MV crash risk given a crash occurrence. 

5.3 Data Preparation 

SR 408, a 22-mile urban expressway, was selected as a study area. The expressway of 

interest is traveled by a large number of commuters and experiences heavy congestions 

during morning and evening peak hours. Hence, travel time reliability varies across time of 

day and across segments of the expressway. Three types of data were collected for SR 408: 

traffic, crash, and geometry. 

Part of traffic data are from AVI system, which is used as ETC for toll expressways. 

For SR 408, most of the travelers (about 85%) have installed AVI tags in their vehicles for 

ETC. By collecting the travel time stamps of the encrypted individual vehicles at different 

locations, vehicles’ travel time and speed information on a segment are readily available. The 

calculations of travel time and speed are as follows, 

downstream upstreamTraval Time Timestamp Timestamp= −                                      (5-4)

downstream upstreamMilepost Milepost
Speed

Travel Time

−
=                                                (5-5) 

The AVI data have been collected since September 2012. At the time of study, data of 

two years and seven months until March 2015 were prepared. On the 22-mile expressway, 

there were 42 activate AVI segments with 22 on the eastbound and 20 on the westbound in 
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the study period. Based on the AVI data, average speed, standard deviation of speed, and the 

three indicators, i.e., Percent Variation, Buffer Index, and Misery Index, were calculated. 

Since the AVI system only detects vehicles equipped with tags but cannot detect all 

vehicles, the traffic volumes on each AVI segment cannot be obtained from AVI but were 

derived from the MVDS detectors, which are capable of detecting all vehicles. There were 

about 55 MVDS detectors on each direction of SR 408. When there were one or more MVDS 

detectors within an AVI segment, the average volume per lane from multiple locations would 

be calculated. If there were no MVDS detectors exists within an AVI segment, the average 

volume per lane from the nearest upstream and downstream MVDS detectors was used. 

Meanwhile, crash data were prepared from S4A database. The crash data provide 

crash time, location, passenger numbers, and roadway surface condition (i.e., wet or dry), etc. 

For SR 408, 1,342 crashes occurred on the expressway mainline during the study period, 

among which 1,112 were MV crashes and 230 crashes were SV crashes. According to the 

crash counts, it can be found that the majority of crashes on this urban expressway were MV 

crashes, which might imply distinct mechanisms for these two types of crashes.  

In addition to traffic data, roadway geometric characteristics are also significant crash 

contributing factors (Shankar et al., 1995; Ahmed et al., 2011; Yu et al., 2013). In this task, 

geometric data for the expressway were downloaded from FDOT RCI database. 

Homogeneous segments of the roadway were generated according to their geometric 

characteristics. Short distance segments (less than 0.1 mile) were combined with adjacent 

segment, which is with higher similarity. The chosen geometric characteristics included 

number of lanes, existence of auxiliary lanes, speed limit, horizontal degree of curvature, 
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median width, and shoulder width. In total, there are 99 RCI segments generated on the 

eastbound and 99 RCI segments on the westbound. 

5.4 Descriptive Analysis 

For crash frequency analysis, after collecting AVI and MVDS traffic data, crash data, 

and geometric characteristics data, the three data were merged together. The Table 5-1 gives 

a descriptive analysis for the three datasets. 

Table 5-1 Descriptive analysis for crash frequency analysis 

Variables Description Mean Std. Minimum Maximum 

YMV MV crashes per segment 5.62 9.60 0 83 

YSV SV crashes per segment 1.16 1.49 0 7 

Lanevol Traffic volume by lane 12198.77 3687.61 5612.55 20600.05 

Speed Average speed (mph) 63.55 4.93 51.82 74.09 

Std_speed Standard deviation of speed 7.65 2.05 4.76 13.58 

Length Segment length (mi) 0.22 0.13 0.07 0.76 

Lanes Number of lanes -- -- 2 5 

Auxiliary 0=no auxiliary lanes; 1= auxiliary lanes -- -- 0 1 

Spd_lmt Speed limit -- -- 55 65 

Hrzdgcrv Horizontal degree of curvature 0.48 0.89 0 5.25 

Mdwidth Median width (feet) 35.37 18.64 20 64 

Sldwidth Shoulder width (feet) 10.03 0.25 10 12 

Per_var Percent Variation 36.34 17.44 14.43 87.02 

Buffer_index Buffer Index 19.47 15.08 11.34 102.61 

Misery_index Misery Index 0.22 0.09 0.13 0.56 

 

For real-time safety analysis, the data from the three sources were merged together 

and created 973 complete real-time SV and MV crash observations. The descriptive analysis 

of the observations is shown in Table 5-2.  
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Table 5-2 Descriptive analysis for real-time safety analysis 

Variables Description Mean Std.  Minimum Maximum 

Y 0=crash is a SV crash; 1=MV crash -- -- 0 1 

Speed Average speed in 5 minutes (mph) 58.10 11.15 6.96 108.59 

Std_speed 
Standard deviation of speed in 5 minutes 

(mph) 
4.99 2.45 0 38.69 

Lanes Number of lanes (lane) 3.12 0.97 2 5 

Lane345 0=two lanes; 1=more than 2 lanes -- -- 0 1 

Auxiliary 0=no auxiliary lanes; 1= auxiliary lanes -- -- 0 1 

Spd_lmt Speed limit -- -- 55 65 

Hrzdgcrv Horizontal degree of curvature 0.50 0.85 0 5.25 

Mdwidth Median width (feet) 28.12 15.82 20 64 

Sldwidth Shoulder width (feet) 10.00 0.09 12 10 

Passenger 0=no passengers in the car; 1=otherwise -- -- 0 1 

Wet 0=dry roadway surface condition; 1=otherwise -- -- 0 1 

Per_var Percent Variation in 5 minutes (%) 10.50 11.99 0 149.56 

 

5.5 Methodology 

5.5.1 Bayesian Hierarchical Poisson-lognormal Model 

As crash counts are non-negative integers, generalized linear models are adopted in 

crash frequency analysis. Lord and Mannering summarized the statistical methods for crash-

frequency data, their strength and disadvantages (Lord and Mannering, 2010). Among these 

methods, Bayesian inference is widely used for its capability to deal with sophisticated data 

structure that cannot be handled by Maximum Likelihood Estimation (Huang and Abdel-Aty, 

2010).  

The data used in crash frequency analysis might exhibit hierarchical structure. On 

each direction, there were 99 RCI segments but only about 20 AVI segments, multiple RCI 

segments shared the same traffic information. Given the structure of the data, the traditional 



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 52 

assumption about the independent sample in regression models does not hold. To properly 

evaluate the effects of traffic variables, the hierarchical data structure needs to be addressed. 

In this study, a Bayesian hierarchical Poisson-lognormal model framework was 

adopted. The introduction of lognormal random effects was to solve the issue of over-

dispersion. The model specification is set up as: 

~ ( )ij ijY Poisson λ                                                             (5-6) 

0 [ ]log( )ij j i ij iXλ α α β ε= + + +                                             (5-7) 

j jUα γ=                                                           (5-8) 

where ijY  is the observed crash frequency on RCI segment i (i=1,2,…,198) nested 

within AVI segment j (j=1,2,…,42) that follows Poisson distribution with parameter ijλ . 0α

stands for intercept. ijX  are geometric characteristics variables and β  are the corresponding 

coefficients. The random effects follows normal distribution ~ (0,1/ )i iNε τ . jα  represents 

the effects of AVI traffic variables jU . γ  is coefficients for jU . The models were calibrated 

with non-informative prior distributions in WinBUGS software (Lunn et al., 2000). β  and γ

are assigned with 6(0,10 )N and 3 3~ (10 ,10 )i gammaτ − − . 

5.5.2 Logistic Regression Model 

Logistic regression models have been widely used in real-time crash studies (Abdel-

Aty and Pande 2005, Hourdos et al. 2006). They are capable to distinguish and quantify crash 

contributing parameters. For any given crash event i, it has two exclusive states: MV crash or 
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SV crash. In this task, the binary responses, MV crash (yi=1) and SV crash (yi=0), were 

converted into probabilities pi (yi=1) and 1-pi (yi=0), respectively. The model is as follows, 

~ ( )i iy Bernoulli p                                                         (5-9) 

0
1

log( )
1

R
i

r ri
ri

p
x

p
β β

=

= +
− ∑                                              (5-10) 

where 0β  is the intercept, rβ  the coefficient of rth predictors, rix  the value of rth 

explanatory variable for ith observation. The logistic regression model was calibrated in SAS 

software using PROC LOGISTIC. 

5.6 Model Results 

5.6.1 Crash Frequency Analysis 

In Bayesian inference, Deviance Information Criterion (DIC) was adopted for model 

performance evaluation. DIC is the summation of model fitting and the number of effective 

variables. Smaller DIC is better. Percent Variation, Buffer Index, and Misery Index were 

individually included in the crash frequency models for MV and SV crashes in Table 5-3 and 

Table 5-4.  
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Table 5-3 Parameter estimation for MV crash frequency 

Variables 
Percent Variation Buffer Index Misery Index 

Estimate Std. Estimate Std. Estimate Std. 

Intercept -0.746# 5.326 -0.2882# 3.07 -3.579# 3.38 

Log_Lanevol 0.354** 0.052 0.342** 0.041 0.294** 0.052 

Log_Length 1.302** 0.165 1.338** 0.171 1.289** 0.168 

Auxiliary 0.433** 0.166 0.45** 0.169 0.426** 0.159 

Mdwidth -0.017** 0.007 -0.017** 0.006 -0.016** 0.006 

Per_var 0.007# 0.007 -- -- -- -- 

Buffer_index -- -- 0.022** 0.008 -- -- 

Misery_index -- -- -- -- 3.716** 1.423 

B 731.997 731.642 730.989 

C3 124.558 123.232 123.492 

DIC 856.555 854.874 854.481 

                   ** Significant at the 5% Bayesian Credible Interval 
                    # Not significant at the 10% Bayesian Credible Interval 
                   All other variables are significant only at the 10% Bayesian Credible Interval 

 
Table 5-4 Parameter estimation for SV crash frequency 

Variables 
Percent Variation Buffer Index Misery Index 

Mean Std. Mean Std. Mean Std. 

Intercept 2.157# 2.496 2.31# 2.674 3.827# 2.674 

Log_Lanevol 0.215** 0.049 0.213** 0.036 0.215** 0.044 

Log_Length 1.148** 0.167 1.168** 0.165 1.162** 0.16 

Auxiliary 0.143# 0.185 0.148# 0.173 0.136# 0.177 

Mdwidth -0.011 0.006 -0.01** 0.005 -0.011** 0.005 

Per_var 0.001# 0.007 -- -- -- -- 

Buffer_index -- -- 0.003# 0.007 -- -- 

Misery_index -- -- -- -- 0.312# 1.215 

B 495.982 498.96 498.349 

C3 51.167 49.494 49.083 

DIC 547.149 548.454 547.432 

     ** Significant at the 5% Bayesian Credible Interval 
      # Not significant at the 10% Bayesian Credible Interval 
     All other variables are significant only at the 10% Bayesian Credible Interval 
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In the MV crash frequency model, logarithmic volume per lane positively affects the 

crash frequency. Meanwhile, the logarithmic segment length, median width, and existence of 

auxiliary lanes are significant geometric characteristics. Traffic volume and segment length 

are the most common exposure variables in previous traffic safety analysis, of which many 

suggested that crash count is not linearly proportional to volume and segment length thus the 

logarithmic transformation was applied (Ahmed et al., 2011). The effects of median width 

and existence of auxiliary lanes are consistent with existing studies (Shi and Abdel-Aty, 

2015). The median width has negative effect on crash frequency since it provides more space 

for vehicle leeway to avoid a crash. The auxiliary lanes provide turning movements near 

expressway ramps where speed changes and lane changes are required. The speed change 

actions might result in rear-end crashes, and lane change maneuvers might cause sideswipe 

crashes. 

The modeling results of MV crash frequency study also confirmed that travel time 

reliability has an impact on MV crash count. Comparing the performances of Percent 

Variation, Buffer Index, and Misery Index in the models, both Buffer Index and Misery 

Index were found to be significant at the 5% Bayesian Credible Interval while Percent 

Variation was not. The different performances of indicators in the models might originate 

from their definitions. Both Buffer Index and Misery Index emphasize the effects of late 

arrivals on travel time reliability. In contrast, Percent Variation treats early and late arrivals 

equally. For most motorists, the risk and cost of early and late arrivals could be distinct. Late 

arrivals are more likely to cause anxiety and risky behaviors than early arrivals. In summary, 

as reflected in the significance of the three variables, lower travel time reliability caused by 

delayed trips would pose more challenges to traffic safety. Consequently, to better capture 
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how travel time reliability affects crash frequency, the use of Buffer Index and Misery Index 

are recommended. 

The parameter estimation for SV crashes is different from that for MV crashes. As 

exposure variables, higher values of logarithmic segment length and traffic volume per lane 

are related with more SV crashes. The effects of median width remain the same for both SV 

and MV crashes. The differences between these two types of crashes are mainly reflected by 

auxiliary lanes and travel time reliability. For SV crashes, existence of auxiliary lanes is no 

longer significant. Such result is expected as merging and diverging on the segments with 

auxiliary lanes would be more likely to cause MV crashes rather than SV crashes. Travel 

time reliability, unlike their effects on MV crashes, does not have significant impact on SV 

crashes. SV crashes are more likely to occur under free flow conditions, under which travel 

time might be more stable. Given the estimation results of SV and MV crashes, it is obvious 

that travel time reliability has greater effects on MV crashes than SV crashes.  

5.6.2 Real-Time Crash Analysis 

For the logistic regression model, in order to prevent high correlation between 

variables, the Pearson Correlation test was done before the modelling process. If the absolute 

of the correlation coefficient value of two continuous parameters was higher than 0.3, or 

when the chi-square test showed two categorical variables were significantly related, only the 

variable which resulted in a higher AUC was kept in the model. The range of AUC is 0.5 to 

1.0, a higher value indicating a better ability in discriminating MV and SV crashes in this 

study. The model estimation is in Table 5-5.  
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Table 5-5 Parameter estimation for real-time MV and SV crash risk 

 

Variables Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -5.659 0.739 58.612 <.001 

Speed 0.042 0.010 17.068 <.001 

Lane345 0.841 0.299 7.887 <.001 

Mdwidth 0.027 0.008 12.468 <.001 

Passenger -1.147 0.238 23.271 <.001 

Wet 0.798 0.198 16.314 <.001 

Per_var 0.015 0.007 4.611 0.03 

AUC 0.725 

 

Speed was found to be significant with a positive sign. This indicates that a high 

speed will increase MV crash potential given a crash happens. When lane number is more 

than two, MV crash risk is increased. It is not hard to understand. Larger lane number 

indicates higher volume on a segment. Volume has more impact on MV crash frequency. 

This may be because a higher volume increases the exposure and possibility of MV crash, 

but decreases SV crash possibility. When volume increases, the possibility that a vehicle 

encounters another vehicles increases, and the possibility, that it is involved in a crash with 

other vehicles, also increases, so MV crash likelihood increases. However, under high 

volume conditions, a vehicle is less likely to have an SV crash without involving other 

vehicles. So higher volume indicates low SV crash probability (Hauer, 2015). To sum up, 

when volume increases, the combination of crash exposure and crash probability result in a 

higher MV crash potential than SV crashes.  
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Additionally, the median width has a positive sign, indicates that a segment with a 

narrow median width increase the SV crash risk. One of main reason for the occurrence of 

SV crashes is vehicle out of control. A wider median width could decrease SV crash risk by 

providing drivers with more leeway to regained control of vehicles. On the other hand, 

median width might not have as much impact on MV crashes as on SV crashes, because MV 

crashes are mainly because of danger interactions between vehicles, such as too close car 

following. 

Furthermore, it was revealed that the presence of passenger was found to increase SV 

crash risk by having a significant negative coefficient. Drivers might be distracted by 

passenger(s) and out of control vehicle. Wet roadway surface condition might increase MV 

crash risks. Wet roadway surface has smaller friction and may result in longer braking 

distance than on dry surface. However, under wet roadway surface condition, drivers might 

keep the same following distances as under dry condition, and vehicles run into a heading 

vehicle because of long braking distance. Hence, wet roadway surface condition significantly 

increases MV crash risk. 

The Percent Variation was statistically positive related to MV crash risk. A higher 

Percent Variation indicates that behaviors of motorists could vary substantially. On the other 

hand, SV crashes are more likely to occur under free flow conditions, under which condition 

travel time might be more stable. This result further confirms the conclusion from the crash 

frequency prediction models: travel time reliability has different impact on MV and SV 

crashes.  
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5.7 Summary 

The reduced travel time reliability could cause unstable traffic flow thus affects 

efficiency and safety. In this task, MV and SV crash data on SR 408 have been collected. The 

different MV and SV crash frequencies indicated that the crashes mechanisms for MV and 

SV crashes might not be the same. Hence, the project has worked on crash frequency and 

real-time crash analysis for MV and SV crash using travel time reliability indicators: Percent 

Variation, Buffer Index, and Misery Index. The three indicators were used in crash frequency 

study, but only Percent Variation was used in real-time safety analysis because the other two 

indicators are not suitable to be used in real-time analysis. 

Two Bayesian Hierarchical Poisson-lognormal models were developed to predict SV 

and MV crash frequencies separately. The results showed that Buffer Index and Misery Index 

had significant positive impact on MV crash frequency; however, Percent Variation was not 

significant. On the other hand, all the indicators were not significantly related to SV crash 

frequency. Then, a logistic regression model was built to evaluate the quantitative impact of 

Percent Variation on MV crash risk give a crash occurrence. The results showed that high 

Percent Variation, indicating low travel time reliability, would increase MV crash risk. 

At present, many toll expressway agencies provide travelers with estimated real-time 

travel time and congestion warning using dynamic message signs. This is beneficial to help 

road users prepare for current traffic conditions and adjust their driving accordingly. Thus, 

the study has found that improving travel time reliability would decrease MV crash potential. 

Given the high proportion of MV crashes on expressways, it is expected that reduction of 

MV crashes will remarkably improve safety.  
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CHAPTER	6:	REAL-TIME	EVALUATION	FOR	RAMP	CRASHES	

6.1 Introduction 

There have been numerous studies on real-time crash prediction models with the 

intention to link real-time crash likelihood with various predictors. The underlying 

assumption of these studies is that some predictors, called crash precursors, are relatively 

more ‘crash prone’ than other parameters. Among the studied traffic predictors, the standard 

deviation of speed, traffic volume, and traffic density were common significant crash 

precursors (Lee et al., 2002; Abdel-Aty and Pande, 2005). Additonally, geometric parameters 

play important roles in the occurrence of crashes (Wang et al., 2015a). 

However, the human factors’ impact has not been widely examined in real-time 

safety studies. There are two types of events in real-time safety analyses: crash and non-crash 

events. For crash events, crash reports can provide information for drivers who are involved 

in a traffic crash. On the other hand, for non-crash events, driver information cannot be 

obtained from available data sources. Hence, real-time crash risk analysis is unable to 

consider driver characteristics as explanatory variables. Trip generation and land-use factors 

can reflect driver behavior and further reflect their effect on traffic safety. From a 

macroscopic perspective of view, trip generation and land-use have already been proven 

significant crash frequency contributing factors (Abdel-Aty et al., 2013; Lee et al., 2015a; 

Lee et al., 2015b). However, there has been no study, which adopted trip generation and 

land-use factors in microscopic traffic safety analyses.  

For crashes that happen on ramps, the origins or destinations of the vehicles involved 

in the crash are likely to be ramp nearby zones. Hence, if the trip generation and land-use 
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information of the zone in which a ramp lies can be captured, these points of data might act 

as surrogates of driver characteristics for ramps.  

The logistic regression model has been widely used in the analysis of data whose 

target variable is binary (Washington et al., 2010). It measures the relationship between the 

target variable and explanatory variables based on a logistic function. The model is easy for 

interpretation since the model results provide the coefficient value for each significant 

variable. However, the logistic regression assumes that the error term has a standard logistic 

distribution. In reality, this assumption may not be true. On the other hand, the data mining 

method might not be able to provide the impact of each independent variable on the target 

variable, but it does not have a restriction on the distribution of parameters. Among 

numerous data mining methods, Support Vector Machine (SVM) models have been applied 

in several transportation studies, because they can provide high accuracy (Qu et al., 2012). 

Hence, this chapter integrated data mining and traditional statistical model (logistic 

regression model) to conduct real-time crash analysis for ramps.  

6.2 Methodology 

6.2.1 Logistic Regression Model 

For any given event i, it has two exclusive states: crash or non-crash. In this task, the 

binary responses, crash ( iy =1) and non-crash ( iy =0), are converted into probabilities ip  ( iy

=1) and 1- ip  ( iy =0), respectively. The model is as follows, 

~ ( )i iy Bernoulli p                                                               (6-11) 

0
1

log( )
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r ri
ri

p
x

p
β β

=

= +
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where 0β  is the intercept, rβ  the coefficient of rth predictors, rix the value of rth 

explanatory variable for ith observation. 

6.2.2 Support Vector Machine 

SVM is used for classification analysis by constructing a hyperplane or set of 

hyperplanes in a high- or infinite-dimensional space (Suykens and Vandewalle, 1999). The 

hyperplane with the largest distance to the nearest training-data point is chosen, indicating 

that it provides the largest separation between two types of events. There are two sorts of 

SVM: linear and nonlinear. The choice of SVM sort is based on the data type, e.g., a linear 

SVM is better if data is linearly separated. A nonlinear SVM is achieved by applying a 

kernel. By introducing a kernel, SVM is flexible in the choice of the separation form and can 

handle nonlinear data (Deng et al., 2012). In this task, a nonlinear SVM is applied. 

The crash occurrence outcome y is either 1 (crash) or -1 (non-crash). Training data D 

is a set of n points of the form, 

( ) { }{ }
1

, | , 1,1
nP

i i i i i
D x y x R y

=
= ∈ ∈ −                                           (6-13) 

where x  is the matrix of independent variables and P is the number of significant 

variables. The decision function is as follows, 

( ) ( )Tf x sign w x b= +                                                       (6-14) 

1 2[ ... ]Tpω ω ω ω=                                                      (6-15) 

A hyperplane can be written as the set of points x satisfying 

0Tw x b+ =                                                             (6-16) 



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 63 

( )T
iw x b+  should be positive when iy =1, and it should be negative when iy =-1. To 

summarize, ( ) 0T
i iy w x b+ > . The decision function is using a sign-function. This results in 

an uncertainty of distance or margin (Campbell and Ying, 2011). Hence, two parallel 

hyperplanes is constructed (Campbell and Ying, 2011): 

1Tw x b+ =                                                            (6-17) 

and  

1Tw x b+ = −                                                           (6-18) 

The distance between these two hyperplanes is 2
w

. The target of SVM is to maximize 

the distance between the two hyperplanes by minimizing 21
2
w . In order to prevent data 

points from falling into the margin between two hyperplanes, the following constraint is 

added:  

for each observation i either  

1, 1T
i iw x b if y+ ≥ =                                                      (6-19) 

or 

1, 1T
i iw x b if y+ ≤ − = −                                               (6-20) 

Combing Eq. 6-9 and 6-10, produce the following new constrain: 

( ) 1,T
i iy w x b for all i+ ≥                                               (6-21) 

This is a constrained optimization problem in which 21
2
w  is minimized subject to 

constrain Eq. 6-11. The optimization problem can be reduced to the minimization of the 

following Lagrange function, 
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1
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where iα  are Lagrange multipliers, and iα >0. The Eq. 6-12 is taken the derivatives 

with respect to b and w , and set these derivatives to zero: 
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Substituting Eq. 6-13 and 6-14 back into Eq. 6-12, the formulation is obtained, 
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Subject to 

1
0 0

n

i i i
i

and yα α
=

≥ =∑                                                (6-26) 

Eq. 6-15 shows the linear kernel ( . ) ( . )i j i jK x x x x= , but when the points are not 

linearly classified, there is a need to conduct another kernel. In this task, the Gaussian radial 

basis kernel was used, 

2
( . ) exp( ), 0i j i jK x x x x forγ γ= − − >                                    (6-27) 

whereγ  was set as 0.5. Compared to a linear kernel, the Gaussian radial basis kernel 

has been proven better in a real-time safety study by Yu and Abdel-Aty (2013b). 
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6.3 Data Preparation 

This chapter chose 141 ramps from three expressways in Central Florida: SR 408, SR 

417, and SR 528. The study period was from July 2013 to March 2014. Five dataset were 

collected: crash, traffic, geometry, trip generation, and land-use data. 

The crash data were from S4A. For each crash observation, crash report provided 

crash time, coordinate, type and severity, etc. The traffic data were supplied by MVDS 

detectors from CFX. The MVDS detectors record aggregated vehicle counts, time mean 

speed, and lane occupancy every minute for each lane.  

In addition to crash and traffic data, ramp geometric characteristics data were 

collected. The shoulder width information was obtained from the FDOT RCI database; ramp 

type (on- and off-ramp), ramp configuration (diamond and non-diamond ramp), and presence 

of a tollbooth were gathered manually using ArcGIS. The studied ramps exist in 69 

SWTAZs. Both trip generation and land-use data of these SWTAZs were from the Florida 

Statewide Model from the FDOT Central Office. The trip generation data were estimated 

using observed socio-demographic data. 

There were 122 crashes documented and matched with traffic, geometry, land-use 

and trip generation information. The traffic conditions, which were present 5-10 minutes 

before the reported crash time, were used as crash events. For example, if a crash occurs at 

8:00 A.M., traffic data extracted are from 7:50 to 7:55 A.M. of the same day. The non-crash 

dataset was made up of normal traffic conditions which did not result in a crash or were not 

impacted by a crash. In this task, non-crash events were the traffic conditions that were more 
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than 2 hours before or after a crash observation at the same ramp. Both crash and non-crash 

events were aggregated into 5-minute intervals to mitigate data noise. 

The non-crash dataset consisted of more than 10 million observations. It was not 

practical to use the entire non-crash dataset. Hence, this task adopted an unmatched case-

control design. A total of 1,220 controls (non-crash events) were randomly sampled from the 

non-crash dataset. Thus, the total number of observations was 122 crash and 1,220 non-crash 

events. The descriptive analysis of variables of the final dataset is shown in Table 6-1.  
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Table 6-1 Descriptive analysis for real-time ramp analysis 

Variables Description Mean Std. Min Max 
Traffic Parameters 
Vehcnt Vehicle count in 5-min intervals (veh/5minutes)  18.1 20.7 1 170 
Speed Average speed in 5-min intervals (mph) 52.7 9.0 3.8 103.6 
Std_spd Standard deviation of speed in 5-min intervals (mph)  4.1 3.2 0 34.0 
Occ Average lane occupancy in 5-min intervals (%) 2.5 3.7 0 47.0 
Geometric Parameters 
Sldwth_R Right shoulder width (in ft) 1.9 1.9 1.0 6.0 
Sldwth_L Left shoulder width (in ft) 4.3 2.9 1.0 12.0 
Type 1=if the ramp is an off-ramp; 0=otherwise 0.46 0.50 0 1 
Configuration 1=if the ramp is a diamond-ramp; 0=otherwise 0.58 0.49 0 1 
Toll 1=if there is a toll booth on the ramp; 0=otherwise 0.29 0.46 0 1 
Trip Generation Parameters 
Production Total productions (trips/day) 5,601 5,910 84 25,010 
Attraction Total attractions (trips/day) 5,666 7,663 20 33,742 
P_HBWA Home-based-work attractions divided by total attraction (%) 16.4 9.3 0 74.8 
P_HBWP Home-based-work productions divided by total production 

(%) 14.8 7.1 0 27.6 

P_HBSRA Home-based-social recreational attractions divided by total 
attraction (%) 8.4 3.2 3.2 19.1 

P_HBSRP Home-based-social recreational productions divided by total 
production (%) 7.1 4.2 1.4 31.0 

P_HBSHA Home-based-shopping attractions divided by total attraction 
(%) 9.3 7.4 0 27.2 

P_HBSHP Home-based- shopping productions divided by total 
production (%) 15.8 5.8 3.9 25.0 

Land-use Parameters 
Area  In square mile 1.25 1.62 0.02 10.62 
Pop_density Population density (people/square mile) 2,215 2,038 0 10,312 
Emp_density Employment density (people/ square mile) 1,577 2,633 0 13,295 
Enr_density Enrollment density (people/ square mile) 902 2,607 0 14,945 
P_agri Agriculture employment divided by total employment (%) 1.3 0.3 0 2.2 
P_service Service employment divided by total employment (%) 50.0 9.5 25.0 66.7 
P_constr Construction employment divided by total employment (%) 3.0 2.2 0 10.0 
P_manu Manufacturing employment divided by total employment 

(%) 2.7 2.1 0 8.3 

P_whole Wholesale employment divided by total employment (%) 3.1 2.3 0 10.0 
P_retail Retail employment divided by total employment (%) 19.3 10.4 0 48.8 
P_financ Financial employment divided by total employment (%) 6.7 1.3 3.3 9.5 
P_public Public administration employment divided by total 

employment (%) 8.5 1.5 5.0 11.1 

P_transport Transportation employment divided by total employment 
(%) 5.3 1.0 2.5 7.0 
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6.4 Model results 

This section first estimates a logistic regression to identify the significant variables 

and then applies SVM in crash prediction. The whole dataset was randomly split into training 

and validation datasets with a ratio of 70:30, respectively. 

For the logistic regression model, in order to prevent high correlation between 

variables, the Pearson correlation test was done before the modelling process. If the absolute 

of the correlation coefficient value of two parameters was higher than 0.3, only the variable 

which resulted in a lower Akaike information criterion (AIC) was kept in the model. The 

training and validation AUCs of the logistic regression model were 0.835 and 0.797, 

respectively. It indicated the model had a good ability to distinguish crash and non-crash 

events. The logistic regression model results are shown in Table 6-2. 

Table 6-2 Logistic regression model result for ramp 

Variables Estimate Std. Z value P value 

Intercept -3.25 1.31 -2.48 0.01 

Log(Vehcnt) 0.80 0.16 5.10 0.00 

Speed* 0.03 0.02 1.90 0.06 

Type 0.66 0.28 2.36 0.02 

Configuration -1.12 0.27 -4.15 0.00 

P_HBWP 0.05 0.02 2.60 0.01 

P_Transport -0.72 0.13 -5.41 0.00 

Model Performance 

AIC 456.51 

Training AUC 0.835 

Validation AUC 0.797 

                   * Variable significant at a 90% confidence interval 

The Logarithm of vehicle count in 5-minute intervals is positive, indicating that high 

traffic volume result in high crash risk on a ramp. Traffic volume is the most common 
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exposure variables in previous traffic safety analysis, a significant positive relationship 

between traffic volume and crash count or crash risj has been widely found by researchers 

(Abdel-Aty and Pande, 2005). Speed was also found to be significant at the 10% confidence 

interval with a positive sign. Higher speed definitely increases both braking and reaction 

distance. Hence, a vehicle travelling at a higher speed would more likely have a collision 

with other objects. 

Two geometric factors were found to be significant in the model. The results indicate 

that the crash ratio on off-ramps is about 1.93 times higher that of on-ramps. The reason is 

that vehicles on the off-ramps need to decelerate to adjust to lower speed limits on ramps; 

meanwhile, they have to decrease speed in order to prepare to brake or even stop at the cross-

street intersection. If a following vehicle does not react or decelerate in time, it will collide 

with the vehicle ahead. Ramp configuration is significant and proven to be negatively related 

to crash likelihood. The odds of a crash on a diamond ramp are 0.33 times of that on non-

diamond ramp. Non-diamond ramps have smaller turning radii, and can lead to a loss of 

vehicle control and result in crashes. 

The percentage of Home-based-work production is positively related to crash risk. 

The Home-based-work production includes two trips, one is from home to work, and the 

other is from work to home. First, drivers who travel from home to work have to arrive at 

destinations on time. They may want to avoid being late and may rush to get to work. Thus, 

they might drive at a higher speed than usual. Second, drivers may be tired after whole day of 

work, so the crash potential of work-to-home trip may be higher than other trips.  

The most significant land-use parameter is the percentage of transportation 

employment. It is interpreted that a higher percentage of transportation employees will 
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produce better traffic safety conditions. Transportation employees are those who work in the 

trucking, mass transit, delivery, etc. Compared to other drivers, transportation employees 

need to strictly follow regulations such as drug and alcohol testing, resulting in safer driving 

(U.S. DOT, 2010). Meanwhile, they are more experienced in driving. 

In addition to the logistic regression, SVM models with Gaussian radial basis kernel 

were tested using the same training and validation datasets as the logistic regression model. 

One SVM was based on the selected variables, which have been identified to be significant 

crash contributing factors by logistic regression model; and the other SVM used all variables. 

The model results are in Table 6-3. 

Table 6-3 Performance of SVM models 

 SVM with the selected variables  SVM with all variables 

Training AUC 0.895 0.949 

Validation AUC 0.900 0.739 

 

The SVM model with the selected variables performed better than the logistic 

regression model by providing higher training and validation AUCs. It indicates that the 

SVM model was better in discriminating between crash and non-crash conditions. In 

addition, the training and validation AUCs of the SVM are almost the same and are more 

stable than that of the logistic regression. However, when all variables were used to estimate 

the crash occurrence by SVM, the validation AUC was as low as 0.739 though the training 

AUC was very high. It indicates that the SVM model using all variables had an overfitting 

issue. Too many independent variables migth cause the SVM model to “memorize” training 

data instead of finding the underlying the relationship between dependent and independent 
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variables. The similar phenomenon was also found by other researchers (Yu and Abdel-Aty, 

2013b). 

Random Forests were then used to rank the importance of significant variables. 

Random forests build multiple trees in randomly selected subsets. Trees in different subsets 

generate their classification (Ho, 1995). Random Forests are also used as a frequent tool used 

in estimating variable importance (Breiman, 2001). In this task, the mean decrease in 

accuracy calculated by Random Forests was used to evaluate the significant variables’ 

importance. A variable with a larger mean decrease in accuracy is more important for model 

estimation. The importance of significant variables are shown in Figure 6-1. 

 
Figure 6-1 Variable importance 

The variable importance analysis showed land-use and trip generation parameters 

(P_transport and P_HBWP) are significantly important in crash occurrence. Traffic 

parameters (Log_vehcnt and Speed) are more important than geometry parameters (Type and 

Configuration). The result indicates that land-use and trip generation parameters had made 

great contribution to improving the real-time crash prediction for ramp crashes. In future, 

more land-use and trip generation factors can be explored in other real-time safety analyses. 
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6.5 Summary 

Previous studies found that several real-time traffic and environmental factors are 

significant crash precursors. However, no study has been conducted to analyze the impact of 

land-use and trip generation parameters on crash risk. This chapter explored real-time crash 

risk for expressway ramps using traffic, geometric, land-use, and trip generation predictors.  

A logistic regression model was utilized to find the significant variables. The model 

identified that volume and speed have a positive impact on crash risk. It also indicated that 

off-ramps and non-diamond ramps also significantly increase the crash risk. As for the trip 

generation parameters, the percentage of home-based-work production compared to other 

trip-generation parameters was found to have a positive impact on crash risk. The percentage 

of transportation employment was negatively related to crash risk.  

Subsequently, two SVM models were applied to predict crash occurrence: one with 

all variables and the other only with significant variables identified by the logistic regression 

model. It was found that the SVM model with identified significant variables outperformed 

the logistic regression model by providing higher and more stable AUCs. However, the SVM 

model with all variables might have an overfitting issue as it provided high training AUC but 

lower validation AUC. Therefore, instead of using all collected variables, it would be better 

to build SVM models based on significant variables identified by other models such as the 

logistic regression models. Meanwhile, Random Forests were used to rank the significant 

variables’ importance, the result showed that land-use and trip generation parameters were 

parameters with high importance.  
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CHAPTER	7:	INTERSECTION	SAFETY	PERFORMANCE	FUNCTIONS		

7.1 Introduction 

A series of safety performance functions (SPFs) have been developed for different 

facilities for various crash types. Highway Safety Manual (HSM) (AASHTO, 2010)	provides 

a range of segment- and intersection-based SPFs for many facility types including but not 

limited to rural two-lane two-way roads, rural multilane highways, and urban and suburban 

arterials. According to the HSM (AASHTO, 2010), the SPFs play a key role in identifying 

crash hotspots (i.e., screening), and evaluating safety countermeasures using the empirical 

Bayes method. A majority of the SPFs have been built at the micro-level, such as 

intersection, segment, or corridor level. On the other hand, some researchers have estimated 

SPFs at the macro-level (e.g., traffic analysis zones) to incorporate highway safety in the 

long-term transportation planning process. 

A need of incorporating roadway safety considerations in long-term transportation 

planning process has been emphasized in the last decades in accordance with Moving Ahead 

for Progress in the 21st Century Act (MAP-21 Act) and Fixing America’s Surface 

Transportation Act (FAST Act). This integration planning process is called transportation 

safety planning or macroscopic traffic safety analysis. Incorporating safety in the long-term 

transportation plans has been a vital issue. Safety is being used as one of the performance 

measures in transportation improvement program and in more advanced planning efforts, 

such as scenario planning at the Metropolitan Planning Organization (MPO) level. Therefore, 

transportation engineers need to place more efforts to improve traffic safety problems along 
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with the long-term transportation planning and this is the main reason that the macroscopic 

safety studies have emerged since the last decade. 

Although numerous macro-level studies have found that a variety of demographic and 

socioeconomic zonal characteristics have substantial effects on traffic safety, few studies 

have attempted to coalesce micro-level with macro-level data for estimating SPFs. Abdel-Aty 

et al. (2016) and Lee (2014)	proposed a methodology to integrate macro-level and micro-

level data to provide a comprehensive perspective by balancing the two-levels. Still, their 

methodology is based on the macro-level SPFs. Park et al. (2015) estimated segment-level 

SPFs to evaluate the effectiveness of bicycle facilities. The authors included block-group 

based macro-level data including population density and income and found that the macro-

level parameters were statistically significant in the segment-level SPFs. Recently, Huang et 

al. (2016) estimated SPFs separately at micro-level and macro-level and compared the model 

performance. The results indicated that the micro-level model had a better fit and 

performance. The authors claimed that the micro-level approach was able to provide better 

insights on microscopic factors that directly contributed to traffic crashes; while, the macro-

level approach was beneficial when monitoring regional safety and relating it with socio-

demographic factors. 

Huang and Abdel-Aty (2010) discussed the multi-level data in traffic safety. The 

multi-level included occupant, driver/vehicle, crash, site, geographic region, and the extra 

temporal dimension. The authors suggested many ideas to explore crashes at the multi-level. 

For instance, analyzing traffic crash counts 1) at intersection and time-level; 2) at county and 

corridor-level; 3) at county level with spatial effect; and so on. Guo et al. (2010) developed 

several SPFs for signalized intersections with corridor-level spatial correlation. The authors 



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 75 

found that the Poisson spatial model with the corridor-level spatial effects provided the best 

model fitting. This study is inspired by the studies by Huang and Abdel-Aty (2010) and Guo 

et al. (2010), but it is different as it applies macro-level variables and random-effects along 

with micro-level variables to developed micro-level SPFs. 

Several researchers explored the effects of geographic units on crash modeling at the 

macro-level. Abdel-Aty et al. (2013) investigated the effect of different zonal systems. The 

authors compared crash models based on three different areal units block groups (BGs), 

census tracts (CTs) and traffic analysis zones (TAZs). The result showed that the BG based 

model had the larger number of significant variables for total and severe crashes compared to 

models based on other geographical units. Lee et al. (2014b) developed traffic safety analysis 

zones (TSAZs) by aggregating existing TAZs with comparable crash characteristics, and they 

compared TAZ-based and TSAZ-based models and then claimed that the TSAZ-based model 

outperforms the TAZ model in terms of goodness-of-fit. The authors argued that if a zone 

size is small, it is possible that the shared characteristics between intersections in the same 

zone may not be sufficiently aggregated; on the contrary, many local features might be lost if 

the zone is too large (Lee et al., 2014b). Similarly, it is necessary to find the data from the 

optimal sized spatial unit that can provide the best modeling results for intersection SPFs. 

Although several studies suggested ideas to link macro-level and micro-level data, no 

studies have tried to analyze the effects of macro-level variables on micro-level SPFs. 

Meanwhile, it is worth to investigate which geographic units provides the optimal data for 

micro-level SPFs. Therefore, this chapter aims at answering the three research questions: (1) 

can intersection SPFs be improved by considering macro-level geographic units? (2) what 
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would be the best spatial unit for the SPFs? and (3) which macro-level factors do have 

significant effects on intersection crashes? 

7.2 Methodology 

Random-effects count models have been popularly used in the traffic safety field 

(Johansson, 1996; Shankar et al., 1998). One of the basic assumptions of the most statistical 

models is that observations are independent from each other. Nevertheless, this assumption is 

often violated in traffic data, because there might be possible correlation among observations. 

For instance, some observations that are from the same spatial units may have common 

unobserved factors (Lord and Mannering, 2010). Since this study aims at developing 

intersection SPFs using micro- and macro-level data, it is expected that intersections located 

in the same geographic units may have shared unobserved factors. Therefore, mixed-effects 

negative binomial model was adopted in the study to account for the potential correlation 

among intersections from the same geographic units. The mixed effects negative binomial 

model for two levels (i.e., micro- and macro-levels) in this study is specified as follows : 

~ ( )ij ijY Poisson λ                                                    (7-1) 

exp( )exp( )ij ij j ijX vλ β ε= +                                         (7-2) 

where ijY  is the number of crashes at intersection i (i=1, 2, …, n) from macro-level 

zone j (j=1, 2, … m). ijλ is the expected number of crashes for intersection i belonging to 

macro-level zone j. ijX is a vector of micro-level explanatory variables for intersection i in 

zone j. β  is a vector of estimable parameters for a vector of explanatory variables ijX , 
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exp( )ijε follows a Gamma distribution with mean one and variance α, and jv  is the macro-

level component as follows: 

j j jv Xγ µ= +                                                           (7-3) 

where jX  is a vector of macro-level explanatory variables for zone j, γ  is a vector of 

estimable parameters for a vector of explanatory variables jX , and jµ  is the random effects 

for j which follows N(0, σ2). Figure 7-1 shows the hierarchical structure used in this study.  

 

 

Figure 7-1 Hierarchical structure of intersection-level and macro-level data 

The best SPF for each crash type was selected based on AIC, Bayesian information 

criterion (BIC), McFadden’s ρ2, and adjusted ρ2. The formulae for these measures are as 

follows: 

2 2 ( )AIC k LL Full= −                                                  (7-4) 

ln( ) 2 ( )BIC k n LL Full= −                                               (7-5) 

2 ( )1
( )
LL Full

LL Intercept only
ρ = −                                            (7-6) 

2 ( )1
( )
LL Full k

Adjusted
LL Intercept only

ρ
−

= −                                  (7-7) 

Int 1 Int 2 Int 3 Int 4 Int 5 Int i-1 Int n …. 

Zone 1 Zone 2 Zone m …. Macro-level  j 

Intersection-level i  
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where k is number of parameters, n is the number of observations, ( )LL Full  is the log-

likelihood for the full model, and ( )LL Intercept only is the log-likelihood for the intercept-

only model. 

In order to prevent the multicollinearity problem, the models formed in this study do 

not include highly correlated variables in the same model. The correlations between the 

variables were checked by Spearman’s rank correlation method. If two variables were highly 

correlated, they were not used simultaneously in the same model. 

7.3 Macro-level Spatial Units 

Varieties of spatial units have been used in macro-level studies. The spatial units 

include census-based, traffic-based, or political boundaries. Figure 7-2 shows the examples of 

various spatial units in the Orlando metropolitan area, Florida. 

Census Block 

A census block is the smallest geographic units used by the U.S. Bureau for the 

collection and tabulation of decennial census data. However, detailed information of census 

block is not available due to confidentiality requirement. On average, there are only 85 people 

in one census block. Due to the lack of detailed information and extremely small sizes, census 

blocks have not been used in this traffic safety studies.  

Census Block Group (BG) 

A census block group (BG) is the next level above the census block. A BG is 

combinations of census blocks. Each BG contains about 39 census blocks on average. 

Population in a BG ranges between 600 and 3,000 people. Some macroscopic traffic safety 

studies adopted BGs as a base geographic unit (Levine et al., 1995, Abdel-Aty et al., 2013). 
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Traffic Analysis Zone (TAZ) 

TAZs are special purpose geographic entities delineated by state and local 

transportation officials for tabulating traffic-related data, especially journey-to-work and 

place-of-work statistics (USCB, 2010). Since TAZs are the only traffic related zone system, 

TAZs have been most popularly used in the macroscopic safety literature (Ladron de Guevara 

et al., 2004; Lovegrove and Sayed, 2007; Hadayeghi et al., 2010; Naderan and Shahi, 2010; 

Abdel-Aty et al., 2011; Wang et al., 2012; Abdel-Aty et al., 2013; Lee et al., 2014b, 2015b). 

Census Tract (CT) 

A census tract (CT) is designed to maintain homogenous socioeconomic status in a 

zone. CTs are statistical sub-divisions of a county, and a CT may include 2,500 to 8,000 

people. Several researchers have analyzed macroscopic traffic safety based on CTs (LaScala 

et al., 2000; Wier et al., 2009; Ukkusuri et al., 2011). 

ZIP-Code Tabulation Area (ZCTA) 

ZIP code is the system of postal codes, it was created and used by the United States 

Postal Service since 1963. In fact, ZIP codes are not a geographic unit but a collection of 

mail delivery routes. U.S. Census Bureau created ZIP-Code Tabulation Areas (ZCTAs), 

which are generalized areal representations of ZIP code service areas. ZCTA based data are 

also provided from the U.S. Census Bureau. Many traffic safety studies using ZIP code have 

been conducted (Stamatiadis and Puccini, 2000; Lee et al., 2014a; Lee et al., 2015a). 

Traffic Analysis District (TAD) 

Traffic analysis districts (TADs) are new; they are higher-level geographic entities for 

traffic analysis (USCB, 2010). TADs are created by aggregating existing traffic analysis 

zones. Traffic analysis districts may cross county boundaries, but they must nest within 
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MPOs. In recent, Abdel-Aty et al. (2016) developed macro-level safety models based on 

TADs. 

Census County Division (CCD) 

Census county divisions (CCDs) are the statistical spatial units established 

cooperatively by the U.S. Census Bureau and officials of state and local governments in 21 

states. CCDs are designed to represent community areas, which focus on trading centers or 

major land-use areas (USCB, 1994). No safety studies have been done using CCDs until this 

point. 

County 

Counties are the primary administrative divisions for most states ((USCB, 1994). For 

higher level of the macroscopic analysis, a county is also used as a geographic unit for the 

macro-level study. Miaou et al. (2003), Noland and Oh (2004), Aguero-Valverde and Jovanis 

(2006), and Huang et al. (2010) aggregated data into county-levels and analyzed crashes. 
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Census Block Group (BG) Traffic Analysis Zone (TAZ) Census Tract (CT) ZIP Code Tabulation Area 

(ZCTA) 

    
Traffic Analysis District (TAD) Census County Division (CCD) County Intersection locations 

 

Figure 7-2 Various geographic units in Orlando metropolitan area, Florida 
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7.4 Data Preparation 

Florida’s statewide data were collected from multiple sources. First, three years 

statewide crash data from 2010 to 2012 were obtained from the two sources: FDOT’s CARS 

and S4A. Traffic and basic roadway geometric variables were collected from the FDOT RCI, 

and some other features (e.g., control type) were checked by Google Earth and Google Street 

View. Macro-level data in the whole Florida were acquired from ACS of the U.S. Census 

Bureau. The prepared data list is shown in Figure 7-3. 

 

Figure 7-3 Intersection-level and macro-level variables	

Table 7-1 displays the descriptive statistics of area and intersection counts by each 

geographic unit, and Table 7-2 summarizes the descriptive statistics of the prepared data 

from intersection-level (a) and macro-level (b). 

Table 7-1 Area and intersection counts by spatial unit 

Spatial unit Count Area (sqmi) No of intersections 
Mean Stdev Min Max Mean Stdev Min Max 

BG 11442 5.747 33.14 0.002 1583 0.730 1.441 0 45 
TAZ 8518 6.472 24.80 9.085E-9 885.3 0.958 1.489 0 20 
CT 4245 15.49 63.44 0.037 1583 1.967 2.915 0 46 
ZCTA 983 50.45 88.12 0.007 1124 12.92 6.639 1 34 
TAD 594 103.3 260.1 2.617 3096 13.05 12.09 0 87 
CCD 316 208.1 208.1 5.753 1893 26.42 44.89 0 406 
County 67 981.5 572.3 249.8 3737 124.6 155.9 1 639 

Intersection-level Variables (X
ij
) 

 
Major AADT 

Minor AADT 

Location (urban or rural) 

Number of legs 

Intersection control type 

One-way road 

Macro-level Variables (X
j
) 

Population density 
Proportions of each age group 

Proportions of commuters by mode 
Proportion of people working at home 

School enrollment density 
Proportion of people with bachelor’s degree or higher 

Proportion of households below poverty line 
Proportion of households with no vehicle 

Median household income 
Proportion of urbanized area 
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Table 7-2 Descriptive statistics of the prepared data 

(a) Intersection-level dependent and independent variables (Yij and Xij) 
Dependent variables (N=8,347) Independent variables (N=8,347) 

Variable Mean Stdev Min Max Variable Mean	 Stdev	 Min	 Max	
Number of total crashes 17.494 24.481 0 260 Major AADT 6,774	 7,159	 20	 56,000	
Number of severe crashes 1.004 1.700 0 26 Minor AADT 20,435	 15,878	 70	 92,000	
Number of pedestrian crashes 0.353 0.871 0 13 Location (urban=1, rural=0) 0.884	 0.320	 0	 1	
Number of bicycle crashes 0.362 0.784 0 9 No of legs (4 legs or more=1, 3 legs=0) 0.726	 0.446	 0	 1	
     Control type (signal=1, stop=0) 0.663	 0.473	 0	 1	
     One-way road (yes=1, no=0) 0.036	 0.186	 0	 1	

(b) Macro-level independent variables (Xj) 

Independent variable (N=8,347) BG TAZ CT ZCTA TAD CCD County 
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

Population density (per sqmi) 2559 2970 2067 2235 2442 2566 2031 2139 2159 2117 1482 1488 631.9 473.6 
Proportion of infants and toddlers (<5 years) 0.053 0.041 0.055 0.022 0.055 0.027 0.055 0.018 0.056 0.014 0.056 0.013 0.056 0.008 
Proportion of children (5-14 years) 0.107 0.061 0.109 0.037 0.109 0.043 0.110 0.032 0.113 0.026 0.114 0.022 0.115 0.014 
Proportion of adolescent (15-24 years) 0.129 0.092 0.132 0.070 0.131 0.078 0.131 0.062 0.135 0.065 0.135 0.059 0.131 0.034 
Proportion of middle-age (25-64 years) 0.523 0.107 0.524 0.070 0.523 0.084 0.520 0.065 0.516 0.054 0.514 0.046 0.515 0.031 
Proportion of young elderly (65-74 years) 0.097 0.065 0.096 0.044 0.096 0.052 0.097 0.043 0.096 0.041 0.098 0.037 0.099 0.031 
Proportion of elderly (75 years or older) 0.089 0.086 0.085 0.053 0.085 0.066 0.084 0.050 0.084 0.045 0.084 0.040 0.084 0.032 
Proportion of commuters using car 0.875 0.124 0.883 0.078 0.880 0.093 0.886 0.073 0.890 0.054 0.893 0.040 0.898 0.024 
Proportion of commuters using public transit 0.022 0.051 0.022 0.037 0.022 0.040 0.021 0.029 0.021 0.029 0.019 0.022 0.016 0.015 
Proportion of commuters using taxi 0.001 0.010 0.001 0.004 0.001 0.005 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 
Proportion of commuters using motorcycle 0.004 0.013 0.004 0.006 0.004 0.008 0.004 0.004 0.004 0.003 0.004 0.003 0.004 0.002 
Proportion of commuters using bicycle 0.010 0.031 0.009 0.018 0.010 0.022 0.009 0.014 0.008 0.010 0.007 0.009 0.006 0.006 
Proportion of commuters who walk 0.024 0.052 0.022 0.034 0.022 0.035 0.019 0.021 0.018 0.017 0.017 0.014 0.015 0.006 
Proportion of commuters using other means 0.013 0.035 0.012 0.014 0.013 0.019 0.012 0.012 0.012 0.009 0.012 0.008 0.012 0.006 
Proportion of people working at home 0.047 0.062 0.047 0.033 0.046 0.042 0.046 0.028 0.046 0.031 0.047 0.021 0.049 0.014 
School enrollment density (per sqmi) 611.0 864.0 201.1 5.472 592.4 740.9 488.9 545.2 535.4 583.4 383.0 437.1 157.2 122.8 
Proportion of people with bachelor’s degree 
or higher 0.238 0.165 0.246 0.136 0.243 0.149 0.247 0.129 0.241 0.120 0.249 0.094 0.259 0.074 

Proportion of households below poverty line 0.152 0.150 0.148 0.096 0.153 0.113 0.146 0.081 0.150 0.082 0.137 0.058 0.123 0.030 
Proportion of households with no vehicle 0.100 0.114 0.093 0.080 0.094 0.087 0.087 0.065 0.085 0.057 0.076 0.035 0.068 0.016 
Median household income (in 1,000 USD) 45.62 22.60 46.77 16.70 46.17 19.13 47.54 15.61 47.36 15.16 48.94 11.14 50.999 7.026 
Proportion of urbanized area 0.816 0.355 0.725 0.386 0.785 0.364 0.667 0.362 0.710 0.395 0.578 0.346 0.301 0.177 
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7.5 Results and discussion 

Three types of models were developed for each crash type as follows: 

• Model Type (1): SPFs with micro-level variables only; 

• Model Type (2): SPFs with micro-level variables and macro-level random-effects; 

and 

• Model Type (3): SPFs with micro-level variables and macro-level variables with 

random-effects 

Table 7-3 summarizes the goodness-of-fit measures of the developed models. There 

are several findings from the model performances. Firstly, it was found that the models with 

macro-level random-effects or variables outperform their counterpart without random-effects 

(i.e., models with micro-level variables only). It is noteworthy that significant improvements 

were observed by only adding macro-level random-effects. The AIC of the total crash SPF 

with micro-level variables only is 54,862 whereas those of the SPFs with macro-level 

random-effects only range between 53,336 and 54,554, which indicates a substantial 

enhancement. Also, severe, pedestrian, and bicycle SPFs were enhanced only by adding 

random-effects. Furthermore, the geographic units that provide the optimal data for 

intersection SPFs were uncovered, in terms of AIC, BIC, ρ2, and Adjusted ρ2. The models 

revealed that the total, severe, and bicycle crash SPF performs the best with ZCTA-based 

data, and the pedestrian crash SPF showed the greatest performance with CT-based data. 

Figure 7-4 compares adjusted ρ2 values of the SPFs with macro-level random-effects and 

variables (Model Types (1) & (3)). From the results, it can be inferred that some geographic 

units may be too small to aggregate meaningful shared characteristics between intersections 
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whereas other geographic units are too large. They are highly aggregated, so they may lose 

many local characteristics. Regardless of the crash type, the SPFs’ performance is the worst 

with county-based data among the Model Type (3). Although the total crash SPF with 

ZCTA-based data has the best performance, TAD-based data also provide comparably good 

results. In contrast, the SPF with ZCTA-based data clearly outperforms other models. 

Regarding the pedestrian crash SPF, CT-based macro-level data can estimate the best 

pedestrian crash SPF but also TAZ, ZCTA, and TAD-based data offer equally good SPFs. 

Lastly, the bicycle crash SPF based on ZCTA performs significantly better than other bicycle 

models.  
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Table 7-3 Summary of model performances 

SPFs Category Spatial  LL (full) AIC BIC ρ2 Adjusted ρ2 

Total 
crashes 

(1) Model with micro-level variables only None -27424 54862 54912 0.1443 0.1441 

(2) Model with macro-level random-
effects 

BG -26989 53994 54050 0.1579 0.1576 
TAZ -26986 53988 54044 0.1580 0.1577 
CT -26847 53710 53766 0.1623 0.1621 

ZCTA -26660 53336 53392 0.1681 0.1679 
TAD -26670 53357 53413 0.1678 0.1676 
CCD -26998 54008 54050 0.1576 0.1574 

County -27269 54554 54610 0.1491 0.1489 

(3) Model with macro-level random-
effects and variables 

BG -26940 53899 53970 0.1594 0.1591 
TAZ -26865 53752 53830 0.1617 0.1614 
CT -26758 53539 53616 0.1651 0.1647 

ZCTA -26609 53240 53317 0.1697 0.1694 
TAD -26637 53293 53363 0.1689 0.1686 
CCD -26968 53950 53999 0.1585 0.1583 

County -27256 54529 54593 0.1496 0.1493 

Severe 
crashes 

(1) Model with micro-level variables only None -10205 20423 20473 0.1156 0.1150 

(2) Model with macro-level random-
effects 

BG -10081 20177 20233 0.1264 0.1257 
TAZ -10066 20147 20204 0.1277 0.1270 
CT -10026 20068 20124 0.1311 0.1304 

ZCTA -9903 19822 19878 0.1418 0.1411 
TAD -9937 19887 19936 0.1389 0.1383 
CCD -9929 19875 19931 0.1395 0.1388 

County -10105 20227 20283 0.1242 0.1236 

(3) Model with macro-level random-
effects and variables 

BG -10068 20156 20226 0.1275 0.1266 
TAZ -10049 20118 20188 0.1291 0.1283 
CT -10010 20043 20120 0.1325 0.1315 

ZCTA -9893 19806 19876 0.1427 0.1418 
TAD -9927 19873 19936 0.1397 0.1389 
CCD -9925 19871 19941 0.1398 0.1390 

County -10081 20181 20251 0.1264 0.1255 

Pedestrian 
crashes 

(1) Model with micro-level variables only None -5471 10957 11006 0.1313 0.1302 

(2) Model with macro-level random-
effects 

BG -5434 10883 10939 0.1374 0.1361 
TAZ -5431 10878 10935 0.1377 0.1365 
CT -5406 10828 10884 0.1418 0.1405 

ZCTA -5352 10720 10776 0.1503 0.1490 
TAD -5333 10682 10738 0.1534 0.1521 
CCD -5269 10564 10655 0.1635 0.1614 

County -5402 10819 10875 0.1424 0.1412 

(3) Model with macro-level random-
effects and variables 

BG -5236 10502 10607 0.1688 0.1664 
TAZ -5228 10483 10581 0.1701 0.1679 
CT -5216 10456 10541 0.1719 0.1700 

ZCTA -5232 10488 10572 0.1694 0.1675 
TAD -5224 10475 10566 0.1706 0.1685 
CCD -5273 10567 10644 0.1629 0.1612 

County -5370 10759 10829 0.1475 0.1459 

Bicycle 
crashes 

(1) Model with micro-level variables only None -5709 11430 11472 0.1264 0.1255 

(2) Model with macro-level random-
effects 

BG -5673 11359 11409 0.1320 0.1309 
TAZ -5671 11356 11405 0.1323 0.1312 
CT -5651 11316 11365 0.1353 0.1343 

ZCTA -5600 11214 11263 0.1431 0.1420 
TAD -5587 11188 11237 0.1451 0.1441 
CCD -5568 11150 11199 0.1480 0.1470 

County -5611 11235 11284 0.1415 0.1404 

(3) Model with macro-level random-
effects and variables 

BG -5561 11141 11472 0.1492 0.1476 
TAZ -5536 11094 11172 0.1529 0.1512 
CT -5529 11078 11149 0.1539 0.1524 

ZCTA -5516 11054 11132 0.1560 0.1543 
TAD -5531 11083 11160 0.1538 0.1521 
CCD -5531 11079 11135 0.1536 0.1524 

County -5582 11183 11246 0.1458 0.1444 
*The best models for each crash type were bolded 
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(a) Total Crashes 

 

(b) Severe Crashes	

 

(c) Pedestrian Crashes	
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NONE BG TAZ CT ZCTA TAD CCD County



 

	Big	Data	for	Safety	Monitoring,	Assessment,	and	Improvement 88 

 

(d) Bicycle Crashes 

Figure 7-4 Comparison of adjusted ρ2 values of the SPFs with macro-level random-

effects and variables 

Tables 7-4 to 7-7 display the modeling results for total, severe, pedestrian, and 

bicycle crashes at intersections with macro-level variables. All the variables in the final 

model are significant at the 5% confidence interval, and the following explanations are based 

on the best model for each crash type. 

7.5.1 Total Crash SPF 

The best SPF of total crash was estimated with ZCTA-based data. Except for 

‘Location (urban=1, rural=0)’ variable, all other intersection variables were statistically 

significant at 5% in the SPF with ZCTA-based data. The location dummy variable was 

highly correlated with ‘Log (population density)’ and thus these two variables could not be 

used at the same time. These variables were attempted one by one and the model with ‘Log 

(population density)’ outperforms the one with the location variable. Both ‘Log (major 

AADT)’ and ‘Log (minor AADT)’ were used as exposure variables and as expected they had 

positive and significant impacts on total crashes at intersections. The major AADT had a 

greater impact than the minor AADT as the major AADT had a larger coefficient. It was also 

0.1255

0.1476 0.1512 0.1524 0.1543 0.1521 0.1524
0.1444

NONE BG TAZ CT ZCTA TAD CCD County
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confirmed by previous studies (AASHTO, 2010; Jonsson et al., 2009). This phenomenon is 

also observed in all other models (i.e., severe, pedestrian, and bicycle crash SPFs). 

Meanwhile, ‘No of legs (4 legs or more=1, 3 legs=0)’, ‘Control type (signal=1, stop=0)’, and 

‘One-way road (yes=1, no=0)’ were positively related with total crashes. The intersections 

with more legs have more conflict points that result in more crashes. Regarding the 

signalization, it may reduce some types of crashes (i.e., angle); however, existing studies has 

proven that the signalization significantly increase other types of crashes (i.e., rear-end). 

Thus, the overall crash counts may increase due to the signalization. It was also shown the 

intersections with one-way road tend to have more crashes. It may be because one-way roads 

may confuse the drivers who are not familiar with the one-way road operation, especially at 

intersections.  

‘Log (population density)’ was positively related to total crash counts (Ladron de 

Guevara et al., 2004, Lovegrove and Sayed, 2007; Lee et al., 2014b). Ladron de Guevara et 

al. (2004) explained that population density reflects the degree of interaction among people; 

therefore, the areas with larger population density may result in greater interactions and 

conflicts. ‘Proportion of elderly (75 years or older)’ has a negative effect on total crash 

counts, which is consistent with several prior studies (Lee et al., 2014a; Huang et al., 2010). 

It may be explained by the degree of exposure. Lee et al. (2014a) claimed that elderly drivers 

are less exposed to traffic crashes because they have much shorter trip lengths compared to 

other age groups. Furthermore, median household income (in $1,000) was negatively 

associated with total crash counts, which implies that the area with lower income households 

has a propensity to experience more crashes at intersections (Lee et al., 2014a; Huang et al., 

2010). Lee et al. (2014a) and Martinez and Veloz (1996) explained that people from lower-
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income areas are not able to afford to purchase newer and safer vehicle or equipment, and 

have less chance to get traffic safety information. Therefore, they are more likely to be 

involved in traffic crashes. Lastly, ‘Proportion of commuters using public transit’ has a 

positive effect on total crashes. The zones with higher public transit use are often located in 

highly urbanized area with concentrated activities; and thus they are likely to experience 

more crashes (Abdel-Aty et al., 2013; Lee et al., 2013). 

7.5.2 Severe Crash SPF 

Again, the severe crash SPF performed the best with ZCTA-based data. Almost all 

intersection-level variables were significant in the SPF with ZCTA-based data. ‘Location 

(urban=1, rural=0)’ is significant and negatively associated with severe crashes. It infers that 

more severe crashes occur at rural intersections, compared to urban intersections. At this 

time, the SPF with the location dummy variable performs better than that with ‘Log 

(population density)’. ‘One-way road (yes=1, no=0)’ was not significant for severe crashes. 

The other intersection-level variables are consistent with the total crash SPF. Three ZCTA-

based variables were found significant. ‘Proportion of commuters using motorcycle’ had a 

positive coefficient whereas ‘Proportion of commuters who walk’ and ‘Median household 

income (in $1,000)’ had a negative coefficient in the severe crash SPF. The motorcycle 

variable showed that the intersections within the area with higher proportion of motorcycle 

using commuters had more severe crashes (WHO, 2013). On the other hand, the intersections 

with more walking commuters had a propensity to experience less severe crashes. It may be 

because the areas with higher proportion of walking commuters are in urbanized areas with 

possibly lower speed limit. The income variable is in line with that in the total crash SPF.  
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7.5.3 Pedestrian Crash SPF 

The optimal macro-level data for the pedestrian crash SPF is CT-based data. The 

intersection-level variables including ‘Log (major AADT)’, ‘Log (minor AADT)’, ‘No of 

legs (4 legs or more=1, 3 legs=0)’, and ‘Control type (signal=1, stop=0)’ have a positive 

relationship with pedestrian crashes. Overall six CT-based variables were statistically 

significant. ‘Log (population density)’, ‘Proportion of commuters using public transit’, and 

‘Proportion of commuters who walk’ are positively while ‘Proportion of adolescent (15-24 

years)’, ‘Proportion of elderly (75 years or older)’, and ‘Median household income (in 

$1,000)’ are negatively related with pedestrian crash counts. The three CT-based variables 

with positive effects may be a good surrogate exposure variable for pedestrian crashes. In 

Model Type (1), there is no exposure variable for pedestrians but only traffic volume; 

therefore, the pedestrian crash model could be significantly improved by including the 

macro-level variables including the surrogate exposure variables explained above. Regarding 

to the public transit using and walking commuters, they are pedestrians when they access to 

public transportation facilities or to workplace (e.g., bus stop or rail station) by walking 

(Abdel-Aty et al., 2013). Lastly, the areas with both adolescent and elderly people have less 

pedestrian crashes, which hint at that these people are less exposed to pedestrian crashes 

compared to other age groups (e.g., middle age). 

7.5.4 Bicycle Crash SPF 

The preeminent bicycle SPF was developed with ZCTA-based data. The significance 

of the intersection-variables is the same as those in the pedestrian crash SPF. Five ZCTA-

based variables were found significant for bicycle crashes. ‘Log (population density)’, 
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‘Proportion of motorcycle’, and ‘Proportion of commuters using bicycle’ have a positive 

while ‘Proportion of adolescent’ and ‘Median household income (in $1,000)’ have a negative 

relation with bicycle crashes. The population density and the bicycle commuter variables 

were as expected but it is interesting that the motorcycle commuter variable also has a 

positive effect. It is thought that there are common features in motorcycle and bicycle use. 

Both transportation modes are used for recreational and leisure activities. Therefore, the 

communities with the larger number of bicyclists also may have more motorcyclists. Similar 

to the pedestrian crash SPF, the model has been significantly improved by adding macro-

level variables (i.e., population density, bicycle/motorcycle using commuter variables) 

compared to the model with intersection-level variables only. 
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Table 7-4 The estimated safety performance functions for total crashes at intersections with macro-level variables 

Variables (N=8,347) 
Model Type (1) Model Type (3) 

None BG TAZ CT ZCTA TAD CCD County 
Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

Intercept -7.62 0.11 -7.90 0.12 -7.70 0.12 -7.80 0.12 -7.53 0.13 -7.55 0.14 -7.66 0.13 -6.91 0.17 
Log (major AADT) 0.74 0.01 0.73 0.01 0.72 0.01 0.73 0.01 0.71 0.01 0.70 0.01 0.70 0.01 0.69 0.01 
Log (minor AADT) 0.27 0.01 0.30 0.01 0.28 0.01 0.29 0.01 0.27 0.01 0.27 0.01 0.27 0.01 0.25 0.01 

Location (urban=1, rural=0) -0.13 0.04               
No of legs (4 legs or more=1, 3 
legs=0) 0.45 0.02 0.43 0.02 0.42 0.02 0.42 0.02 0.42 0.02 0.42 0.02     

Control type (signal=1, stop=0) 0.58 0.03 0.50 0.03 0.52 0.03 0.50 0.03 0.52 0.03 0.52 0.03 0.69 0.02 0.71 0.02 

One-way road (yes=1, no=0) 0.36 0.05 0.12 0.05 0.12 0.05 0.11 0.05 0.09 0.05 0.09 0.04 0.28 0.04 0.23 0.04 

Log (population density)   0.02 0.01 0.04 0.01 0.03 0.01 0.05 0.01 0.04 0.01 0.10 0.01 0.20 0.02 

Proportion of children (5-14 years)                 
Proportion of adolescent (15-24 
years)                 
Proportion of young elderly (65-74 
years)                 
Proportion of elderly (75 years or 
older)     -1.85 0.19 -1.17 0.16 -1.71 0.30 -1.94 0.36     
Proportion of commuters using 
public transit   1.45 0.21 1.73 0.30 1.95 0.32 3.07 0.67 3.28 0.70     10.02 0.99 
Proportion of commuters using 
motorcycle                 
Proportion of commuters using 
bicycle                 

Proportion of commuters who walk                 
Proportion of people working at 
home                 
Proportion of households with no 
vehicle                 

Median household income (in 
$1,000)   

-
0.00
2 

0.00
0 

-
0.00
3 

0.00
1 

-
0.00
3 

0.00
1 

-
0.00
3 

0.00
1     -

0.025 
0.00
2 

Variance of random-effects   0.21 0.01 0.19 0.01 0.19 0.01 0.15 0.01 0.14 0.01 0.20 0.02 0.16 0.04 
α 0.47 0.01 0.24 0.01 0.25 0.01 0.26 0.01 0.29 0.01 0.30 0.01 0.36 0.01 0.41 0.01 
LL (full) -27424 -26940 -26865 -26758 -26609 -26637 -26968 -27256 
AIC 54862 53899 53752 53539 53240 53293 53950 54529 
BIC 54912 53970 53830 53616 53317 53363 53999 54593 
McFadden’s ρ2 0.1443 0.1594 0.1617 0.1651 0.1697 0.1689 0.1585 0.1496 
Adjusted ρ2 0.1441 0.1591 0.1614 0.1647 0.1694 0.1686 0.1583 0.1493 

*All variables are significant at 5% 
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Table 7-5 The safety performance functions for severe crashes at intersections with macro-level variables  

Variables (N=8,347) 
Model Type (1) Model Type (3) 

None BG TAZ CT ZCTA TAD CCD County 
Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

Intercept -8.87 0.22 -8.89 0.23 -9.05 0.23 -8.85 0.24 -8.60 0.23 -8.36 0.24 -8.44 0.27 -9.64 0.27 
Log (major AADT) 0.76 0.03 0.74 0.03 0.75 0.03 0.75 0.03 0.74 0.03 0.73 0.03 0.74 0.03 0.74 0.03 
Log (minor AADT) 0.19 0.02 0.20 0.02 0.20 0.02 0.19 0.02 0.18 0.02 0.19 0.02 0.20 0.02 0.20 0.02 

Location (urban=1, rural=0) -0.85 0.08 -0.81 0.08 -0.79 0.08 -0.80 0.09 -0.77 0.09 -0.81 0.09 -0.79 0.09 -0.89 0.09 
No of legs (4 legs or more=1, 3 
legs=0) 0.36 0.04 0.35 0.04 0.34 0.04 0.34 0.04 0.32 0.04 0.34 0.04 0.32 0.04 0.36 0.04 

Control type (signal=1, stop=0) 0.34 0.05 0.34 0.05 0.35 0.05 0.35 0.05 0.36 0.05 0.36 0.05 0.35 0.05 0.34 0.05 

One-way road (yes=1, no=0) -0.21 0.09 -0.21 0.10     -0.20 0.10         -0.17 0.09 -0.22 0.09 

Log (population density)                                 

Proportion of children (5-14 years)     0.61 0.27 2.14 0.45 1.12 0.42                 
Proportion of adolescent (15-24 
years)             -0.46 0.23         -1.44 0.64     
Proportion of young elderly (65-74 
years)                                 
Proportion of elderly (75 years or 
older)                                 
Proportion of commuters using 
public transit         -1.19 0.50                     
Proportion of commuters using 
motorcycle                 14.65 5.52             
Proportion of commuters using 
bicycle                             17.74 6.08 

Proportion of commuters who walk                 -3.87 1.20 -6.34 1.79         
Proportion of people working at 
home                                 
Proportion of households with no 
vehicle                             11.03 2.16 

Median household income (in 
$1,000)   

-
0.00

3 
0.00

1 
-

0.00
5 

0.00
1 

-
0.00

5 
0.00

1 
-

0.004 
0.00

1 
-

0.00
6 

0.00
2 

-
0.00

6 
0.00

3   

Variance of random-effects     0.32 0.03 0.30 0.02 0.29 0.02 0.23 0.02 0.21 0.02 0.19 0.03 0.19 0.05 
α 0.58 0.03 0.18 0.03 0.20 0.03 0.20 0.02 0.25 0.02 0.28 0.02 0.35 0.02 0.47 0.03 
LL (full) -10205 -10068 -10049 -10010 -9893 -9927 -9925 -10081 
AIC 20423 20156 20118 20043 19806 19873 19871 20181 
BIC 20473 20226 20188 20120 19876 19936 19941 20251 
McFadden’s ρ2 0.1156 0.1275 0.1291 0.1325 0.1427 0.1397 0.1398 0.1264 
Adjusted ρ2 0.1150 0.1266 0.1283 0.1315 0.1418 0.1389 0.1390 0.1255 

*All variables are significant at 5% 
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Table 7-6 The safety performance functions for pedestrian crashes at intersections with macro-level variables 

Variables (N=8,347) 
Model Type (1) Model Type (3) 

None BG TAZ CT ZCTA TAD CCD County 
Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

Intercept -
13.42 0.47 -

14.16 0.43 -
13.61 0.42 -

13.91 0.42 -
13.04 0.43 -

11.97 0.53 -
12.57 0.44 -12.14 0.72 

Log (major AADT) 0.85 0.04 0.82 0.04 0.82 0.04 0.81 0.04 0.83 0.04 0.80 0.04 0.79 0.04 0.78 0.04 
Log (minor AADT) 0.19 0.03 0.20 0.03 0.18 0.03 0.18 0.03 0.18 0.03 0.19 0.03 0.17 0.03 0.14 0.03 

Location (urban=1, rural=0) 1.11 0.32 0.60 0.08                         

No of legs (4 legs or more=1, 3 legs=0) 0.71 0.08 0.44 0.10 0.61 0.08 0.59 0.08 0.65 0.07 0.63 0.07 0.67 0.08 0.68 0.08 

Control type (signal=1, stop=0) 0.58 0.10     0.44 0.10 0.44 0.10 0.47 0.10 0.49 0.10 0.54 0.10 0.61 0.10 

One-way road (yes=1, no=0) 0.77 0.11                     0.28 0.11 0.47 0.11 

Log (population density)     0.34 0.03 0.32 0.03 0.35 0.03 0.22 0.03 0.21 0.03 0.20 0.04 0.23 0.06 

Proportion of children (5-14 years)     -1.40 0.45             -4.30 1.65         

Proportion of adolescent (15-24 years)     -0.91 0.28 -1.26 0.33 -1.40 0.34 -2.45 0.54 -3.19 0.64 -2.74 0.71 -4.13 1.76 
Proportion of young elderly (65-74 
years)                             -6.65 2.14 
Proportion of elderly (75 years or 
older)     -1.72 0.35 -1.56 0.53 -1.46 0.42 -2.31 0.67 -4.09 1.01         
Proportion of commuters using public 
transit     1.74 0.45 3.18 0.61 3.57 0.59 6.54 1.07 7.32 1.17 11.7

6 1.98 8.42 3.13 
Proportion of commuters using 
motorcycle                                 

Proportion of commuters using bicycle     1.91 0.70 3.96 1.12             8.41 3.62     

Proportion of commuters who walk     1.40 0.47 2.50 0.68 3.77 0.75 8.30 1.49 8.95 2.59 7.04 3.33 30.24 8.46 

Proportion of people working at home         1.70 0.80                     
Proportion of households with no 
vehicle     0.91 0.28                         

Median household income (in $1,000)   
-

0.00
5 

0.00
1 

-
0.01

2 
0.00

2 
-

0.00
8 

0.00
2 

-
0.00

9 
0.00

2 
-

0.00
8 

0.00
2 

-
0.01

0 
0.00

4   

Variance of random-effects     0.27 0.05 0.20 0.05 0.19 0.04 0.15 0.03 0.14 0.03 0.09 0.03 0.05 0.02 
α 1.11 0.08 0.39 0.07 0.45 0.07 0.46 0.06 0.53 0.06 0.56 0.06 0.69 0.06 0.88 0.07 
LL (full) -5471 -5236 -5228 -5216 -5232 -5224 -5269 -5370 
AIC 10957 10502 10483 10456 10488 10475 10564 10759 
BIC 11006 10607 10581 10541 10572 10566 10655 10829 
McFadden’s ρ2 0.1313 0.1688 0.1701 0.1719 0.1694 0.1706 0.1635 0.1475 
Adjusted ρ2 0.1302 0.1664 0.1679 0.1700 0.1675 0.1685 0.1614 0.1459 

*All variables are significant at 5% 
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Table 7-7 The safety performance functions for bicycle crashes at intersections with macro-level variables 

Variables (N=8,347) 
Model Type (1) Model Type (3) 

None BG TAZ CT ZCTA TAD CCD County 
Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 

Intercept -12.36 0.45 -12.75 0.38 -12.70 0.38 -
12.81 0.39 -12.43 0.39 -11.74 0.42 -

12.47 0.40 -12.67 0.44 
Log (major AADT) 0.73 0.04 0.71 0.04 0.72 0.04 0.71 0.04 0.71 0.04 0.70 0.04 0.70 0.04 0.71 0.04 
Log (minor AADT) 0.20 0.03 0.19 0.03 0.18 0.03 0.19 0.03 0.19 0.03 0.21 0.03 0.18 0.03 0.19 0.03 

Location (Urban=1, Rural=0) 1.59 0.33                             
No of legs (4 legs or more=1, 3 
legs=0) 0.51 0.06 0.40 0.06 0.44 0.06 0.40 0.06 0.45 0.06 0.45 0.06 0.46 0.06 0.51 0.06 

Control type (signal=1, stop=0) 0.43 0.08 0.40 0.08 0.32 0.08 0.37 0.08 0.36 0.08 0.37 0.08 0.39 0.08 0.43 0.08 

One-way road (yes=1, no=0)                                 

Log (population density)     0.32 0.02 0.33 0.02 0.34 0.03 0.31 0.03 0.25 0.03 0.26 0.04 0.38 0.04 

Proportion of children (5-14 years)                     -2.63 1.20         

Proportion of adolescent (15-24 years)     -0.65 0.24 -1.28 0.31 -1.11 0.29 -2.19 0.46 -1.78 0.50     -3.83 1.24 
Proportion of young elderly (65-74 
years)                                 

Proportion of elderly (>=75 years)                                 
Proportion of commuters using public 
transit                                 
Proportion of commuters using 
motorcycle         11.31 3.55     16.35 7.35             

Proportion of commuters using bicycle     3.45 0.62 7.29 1.01 7.09 0.88 13.42 1.90 14.08 3.17 25.05 3.04 44.73 4.54 

Proportion of commuters who walk                 

Proportion of people working at home                 
Proportion of households with no 
vehicle                 

Median household income (in $1,000)   -
0.004 

0.00
1 

-
0.004 

0.00
1 

-
0.004 

0.00
1 

-
0.005 

0.00
2 

-
0.005 0.002     

Variance of random-effects     0.29 0.05 0.23 0.04 0.23 0.04 0.13 0.02 0.19 0.03 0.14 0.03 0.05 0.02 
α 0.67 0.06 0.19 0.07 0.25 0.06 0.25 0.05 0.33 0.05 0.33 0.05 0.40 0.05 0.50 0.05 
LL (full) -5709 -5561 -5536 -5529 -5516 -5531 -5531 -5582 
AIC 11430 11141 11094 11078 11054 11083 11079 11183 
BIC 11472 11211 11172 11149 11132 11160 11135 11246 
McFadden’s ρ2 0.1264 0.1492 0.1529 0.1539 0.156 0.1538 0.1536 0.1458 
Adjusted ρ2 0.1255 0.1476 0.1512 0.1524 0.1543 0.1521 0.1524 0.1444 

*All variables are significant at 5%  
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7.6 Summary 

The SPFs play an important role in traffic safety as they are used to identify hotspots 

and assess the effectiveness of safety treatments. Numerous SPFs have been developed but 

most of them are based on the micro-level (i.e., intersection, segment, and corridor). Some 

researchers have analyzed crashes at the macro-level, but few studies have attempted to 

combine micro-level with macro-level data for developing SPFs.  

This chapter aimed at answering the three research questions: (1) can intersection 

SPFs be improved by considering macro-level geographic units? (2) what would be the best 

spatial unit for the SPFs? and (3) what macro-level factors do have significant effects on 

intersection crashes? In order to answer these questions, traffic, geometric, and crash data for 

Florida’s major intersections (N=8,347) were collected from the FDOT and Google Earth. 

Demographic, socioeconomic, and commute data were obtained from the ACS of the U.S. 

Census Bureau. The intersection-level data were combined with macro-level data from seven 

spatial units (i.e., BG, TAZ, CT, ZCTA, TAD, CCD, and county). A series of mixed-effects 

negative binomial models were developed for total, severe, pedestrian, and bicycle crashes 

with the intersection-level data merged with the macro-level data from the various 

geographic units mentioned above. The modeling results revealed the following key findings: 

• The SPFs with macro-level random-effects only and those with both macro-level 

random effects and variables outperform those only with intersection-level variables. 

• The intersection SPFs can be considerably augmented by only including macro-

level random-effects. 
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• The intersection SPFs for total, severe, and bicycle crash SPFs have the greatest 

performance with ZCTA-based data. 

• The intersection SPF for pedestrian crashes performs the best with CT-based data. 

The results imply that generally medium-sized geographic units (i.e., ZCTA and CT) 

work well for intersection-level SPFs. It is because some spatial units (e.g., BG and TAZ) 

may be too small to aggregate meaningful shared characteristics between intersections; 

whereas, other geographic units (e.g., county) are excessively highly aggregated and miss 

much local information. 

Furthermore, the modeling results revealed that the following macro-level variables 

are significant: 

• The population density has a positive relationship with total, pedestrian, and bicycle 

crashes; 

• The proportion of young (15-24 years) group is negatively related to pedestrian and 

bicycle crashes; 

• Elderly (75 years or older) age group are less exposed to total and pedestrian 

crashes; 

• The proportion of public transit using commuters has a positive relationship with 

total and pedestrian crashes; 

• The proportion of motorcycle using commuters is positively associated to severe 

and bicycle crashes; 

• The proportion of bicycle using commuters has a positive effect on bicycle crashes; 

• The proportion of walking commuters has a negative effect for severe crashes while 

it has a positive effect for pedestrian crashes; 
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• The median household income is negatively associated with four types of crashes. 

Both pedestrian and bicycle crash SPFs have been significantly enhanced with macro-

level variables compared to that with intersection-level variables only. This is because there 

is no exposure variable for pedestrians and bicyclists but only traffic volume. The significant 

improvements of the pedestrian and bicycle crash SPFs imply that some macro-level 

variables such as population density, walking and bicycling commuter variables function as a 

good surrogate exposure variable. It is concluded that the performance of micro-SPFs can be 

considerably augmented with the proposed hierarchical modeling methodology in this study.  

There are several possible extensions to this study. First, segment-level SPFs with 

macro-level variables can be estimated. It is possible that the optimal geographic unit for 

segment traffic safety estimation differs from the intersection-level SPFs. Second, it will be 

necessary to apply the data from different regions and check if the results from this study are 

valid in other states. 
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CHAPTER	8:	CONCLUSIONS	

Now more than ever more information is collected, stored, and processed. The large 

amount of information, characterized by variety, volume, velocity, variability, complexity, 

and value, is defined as big data. In return, the big data have brought about enormous 

benefits and challenges to human life. As an important aspect of human life, the 

transportation field has also generated big data. In turn, implementing the transportation 

related big data to monitor, assess, and improve traffic safety is the focus of this study. 

Four types of data were collected and integrated to explore crash contributing factors 

with the aim of improving traffic safety. They are crash, traffic, road geometric, and 

macroscopic data. Each type of data was from several sources, and different sources were 

combined to give information that is more complete. The crash data were from CARS and 

S4A. CARS provides more detailed crash information than S4A, and S4A records more 

crash. The traffic data were from AVI and MVDS. AVI sensors provide traffic information 

for roadway segments: travel time and space mean speed for each vehicle. On the other hand, 

MVDS detectors are point-based and provide vehicle count, time mean speed, lane 

occupancy for each lane at 1-minute intervals for each point. Road geometric data were from 

RCI, which is maintained by FDOT, or manually collected. RCI dataset offer 323 road 

geometric characteristics for each roadway segment in Florida. However, some geometric 

parameters are specific to a roadway type and cannot find in RCI, for example weaving 

segment length. Thus, these geometric data were manually collected from ArcGIS map. 

Microscopic data were from the FDOT Central Office and the ACS of the U.S. Census 
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Bureau. These data reflect the behaviors of traffic participants, such as pedestrian, bicyclist, 

and driver.  

After processing and integrating the data above, preliminary safety evaluation has 

been conducted by data visualization. Hourly volume distribution was described by three-

dimension spatio-temporal and contour plots. The expressway congestion was pictured and 

was measured using TTI, occupancy, and CI based on AVI and MVDS traffic data. 

Subsequently, the spatial patterns of traffic crashes by facility types were visualized from 

2011 to 2014. The visualization of crashes enabled researchers to easily detect crash hotspots 

and suggest appropriate engineering countermeasures.  

Then, the big traffic data were used to build a microscopic simulation network for 

expressway weaving segments, which have a higher crash potential than other expressway 

mainline segments. The input big traffic data made the simulation network well calibrated 

and validated, because the simulated volume, speed, and safety were highly consistent with 

those of the field. Furthermore, two conflict prediction models were estimated using the 

traffic data from VISSIM simulation and conflict information from SSAM. One model was 

based on a 5-minute intervals and the other was based on a 1-minute intervals. In both 

models, Logarithm of vehicle count, maximum influence length, and average acceleration at 

the beginning of weaving segment were significant variables. The model performance of the 

1-minute interval model was better than that of the 5-minute interval model by providing 

higher AUCs and lower standard deviation of variable coefficients.  

Reduced travel time reliability could cause unstable traffic flow thus affects traffic 

safety. This study separately estimated SV and MV crash frequencies using three travel time 

reliability indicators: Percent Variation, Buffer Index, and Misery Index. The results showed 
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that Buffer Index and Misery Index had significant positive impact on MV crash frequency; 

however, Percent Variation was not significant in MV crash frequency model. On the other 

hand, all indicators were not significantly related to SV crash frequency. Additionally, 

Percent Variation was used in real-time safety analysis to estimate MV crash potential given 

a crash occurrence. The model indicates that high Percent Variation would significantly 

increase MV crash risk. 

The safety of a roadway facility is not only determined by the facility’s geometric 

design and traffic, but also it might be impacted by the macroscopic characteristics of the 

zone, which the facility lies in. Macroscopic parameters were implemented in real-time crash 

analysis for expressway ramps and crash frequency estimation for intersections. In the real-

time crash analysis for ramps, land-use and trip generation parameters were important crash 

contributing factors. Two SVM models were applied to predict crash occurrence: one with all 

variables and the other only with significant variables identified by a logistic regression 

model. The SVM with all variables had an overfitting issue. It is recommended to integrate 

data mining method and traditional statistical model to alleviate overfitting issue and to 

improve model performance.  

In the crash frequency prediction for intersections, both pedestrian and bicycle crash 

SPFs have been significantly enhanced with macro-level variables compared to that with 

intersection-level variables only. The significant improvements of the pedestrian and bicycle 

crash SPFs imply that some macro-level variables such as population density, walking and 

bicycling commuter variables function as a good surrogate exposure variable. Additionally, 

total and severe crash SPFs were also improved by adding macro-level random effects and 

variables. The results also indicated that medium-sized geographic units (i.e., ZCTA and CT) 
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might work better for intersection-level SPFs than other macro-level spatial units. Since, 

macro-level data are easily accessible from the U.S. Census Bureau, it is strongly 

recommended to incorporate macro-level data in developing micro-level SPFs. 
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